Intekoufa.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Футеровка вращающейся печи

футеровка вращающейся печи

Изобретение предназначено для термической обработки сыпучих материалов в огнеупорном производстве и цементной промышленности. Футеровка содержит установленные на корпусе печи огнеупорные кирпичи, между которыми уложены металлические пластины. Футеровка в зоне спекания разделена на участки, при этом в панелях, находящихся на участке максимальных температур, равном длине факела, металлические пластины и огнеупорные кирпичи уложены по окружности в соотношении 1 : 2, а в панелях на участках к краям зоны спекания — соответственно 1 : 1. Изобретение позволяет достичь равномерные термические напряжения по длине зоны спекания, повысить стойкость огнеупорной футеровки, а также снизить расход металла. 3 ил.,1 табл.

Формула изобретения

Футеровка вращающейся печи, содержащая установленные на корпусе печи огнеупорные кирпичи и уложенные между ними металлические пластины, отличающаяся тем, что футеровка в зоне спекания разделена на участки, при этом на участке максимальных температур, равном длине факела, металлические пластины и огнеупорные кирпичи в панелях уложены по окружности в соотношении 1 : 2, а в панелях на крайних участках зоны спекания металлические пластины и огнеупорные кирпичи уложены в соотношении 1 : 1.

Описание изобретения к патенту

Изобретение относится к вращающимся печам для термической обработки сыпучих материалов, преимущественно к футеровке печи в зоне спекания, и может быть использовано в металлургической промышленности и промышленности строительных материалов — в производстве огнеупоров и цемента.

Известно для скрепления отдельных кирпичей или блоков в огнеупорной кладке вращающихся печей и придания ей монолитности, обеспечивающей строительную прочность, применение разнообразных связующих материалов — цементных, а также специальных кладочных растворов и металлических пластин. Металлические пластины используют, как правило, при футеровке зоны спекания из периклазохромитового, хромитопериклазового и периклазошпинелидного огнеупоров. Металлические пластины изготавливают из мягкого железа и укладывают как в продольных, так и в поперечных швах (см. Ильина Н.В., Сохацкая Г.А. и др. «Футеровка вращающихся печей цементной промышленности» М., Издательство литературы по строительству, 1967, с. 9, 32-34).

Известна футеровка вращающейся печи, содержащая установленные внутри корпуса печи огнеупорные кирпичи и уложенные между ними металлические пластины из мягкой стали (см. а.с. СССР N 632885, F 27 B 7/28, 1977). Торец пластины, контактирующей с корпусом печи, выполнен с клиновым скосом. Этим достигается уменьшение теплопроводности футеровки и снижение металлоемкости и стоимости пластин за счет скосов.

Известна также футеровка вращающейся печи, содержащая огнеупорные кирпичи и уложенные между ними металлические пластины, расположенные рядами вдоль продольной оси печи (см. а.с. СССР N 1270520, F 27 B 7/28, 1984, прототип). Металлические пластины выполнены в виде параллелограмма и установлены в шахматном порядке, причем наклоны пластин смежных рядов противоположны.

Недостатком известных футеровок вращающихся печей является то, что они не снижают повышенные напряжения в огнеупорной кладке в высокотемпературной зоне, поскольку металлические пластины устанавливаются в каждый продольный ряд огнеупорных кирпичей и создают дополнительные напряжения в огнеупорной кладке, что, в свою очередь, приводит к термическому разрушению и сколу кирпичей. Кроме того, равномерность расположения металлических пластин в зоне спекания неадекватна температурным параметрам по длине зоны спекания печи, при этом где выше температура, там и больше теплоотдача через металлический корпус в атмосферу.

Металлические пластины в рядах кладки при нагревании в окислительной атмосфере, окисляясь, образуют магнетит, при этом пластина увеличивается в объеме почти в 2,1 раза. Далее происходит реакция образования магнезиоферрита, которая сопровождается увеличением объема на 24,3% (см. Гавриш Д.И. «Огнеупорное производство». Справочник. Том 1, М., Металлургия, 1965, с. 338).

Таким образом, установка металлических пластин в каждом продольном ряду не обеспечивает равномерную стойкость кладки по всей длине зоны спекания. При этом в высокотемпературной зоне, равной длине факела, возникают максимальные термические напряжения.

Задача, на решение которой направлено заявляемое изобретение, состоит в создании равномерных термических напряжений по длине зоны спекания, в повышении стойкости огнеупорной футеровки печи, а также в снижении ее металлоемкости.

Технический результат, который может быть получен при использовании изобретения, заключается в снижении на 20% термических напряжений на участке максимальных температур, равном длине факела, и повышении срока службы футеровки до 40%.

Сущность изобретения заключается в том, что в футеровке вращающейся печи, содержащей установленные на корпусе печи огнеупорные кирпичи и уложенные между ними металлические пластины, футеровка в зоне спекания разделена на участки, при этом на участке максимальных температур, равном длине факела, металлические пластины и огнеупорные кирпичи в панелях уложены по окружности в соотношении 1: 2, а в панелях на крайних участках зоны спекания металлические пластины и огнеупорные кирпичи уложены в соотношении 1:1.

Читайте так же:
Пигмент для цемента расход

На фиг. 1 изображена футеровка вращающейся печи, а именно развертка внутренней поверхности кладки огнеупорного кирпича с металлическими пластинами в зоне спекания;
на фиг. 2 — разрез А-А на фиг. 1;
на фиг.3 — разрез Б-Б на фиг. 1.

Футеровка вращающейся печи содержит установленные на корпусе 1 вращающейся печи огнеупорные кирпичи 2, между которыми уложены металлические пластины 3, расположенные рядами вдоль продольной оси печи. Футеровка может быть выполнена продольными рядами с перевязкой поперечных швов в двух смежных рядах, как показано на фиг. 1, так и кольцами.

Футеровка печи в зоне спекания имеет участок 4, равный длине факела, и является зоной максимальных температур, а участки 5 расположены по краям зоны спекания и имеют более низкую температуру. Внутри участков кладка ведется панелями 6, между которыми располагаются температурные швы 7.

Кладка панелей на участке 4 в зоне максимальных температур ведется с установкой металлических пластин 3 через два ряда огнеупорных кирпичей 2 (см. фиг. 2), а кладка панелей на крайних участках 5 выполняется с установкой металлических пластин через каждый ряд огеупорных кирпичей (см. фиг. 3).

Футеровка вращающихся печей в производстве магнезитовых огнеупорных изделий, особенно в зоне спекания, подвержена воздействию высоких температур (1700-1900 o C) и после 2/3 каждого оборота печи соприкасается с обжигаемым материалом, температура которого на 150-200 o C ниже температуры факела. От общей длины вращающейся печи на зону спекания приходится до 40%, в том числе около 18% — на длину факела, на участке которого развиваются достаточно высокие температуры. Так, для примера, на 90-метровой печи длина факела и зоны спекания составляет соответственно 15,4 и 44 метра.

Таким образом, футеровка зоны спекания имеет участок с максимальной температурой в зоне факела и участки, примыкающие к нему, с температурами более низкими.

Температуру корпуса печи нельзя повышать более 450 o C, так как прочность стали уменьшается в 7 раз. Обычно температура корпуса не должна превышать 300-350 o C. При более высоких температурах возникают большие растягивающие напряжения, прочность резко падает и корпус может разрушаться. Если брать в расчет, что температура корпуса — величина постоянная и составляет 200 o C в приграничных участках к зоне факела и 300 — 350 o C в зоне факела, то температура на поверхности кладки колеблется от 1000 o C до 1200 o C в приграничных к зоне факела участках и 1500-1600 o C в зоне факела (см. Гавриш Д.И. «Огнеупорное производство», Справочник, том II, М., Металлургия, 1965, с. 8-9).

Величина термических напряжений, возникающих в изделиях кладки, пропорциональна изменению температуры и определяется по формуле

где — величина термического напряжения, кГ/см 2 ;
E — модуль упругости материала, кГ/см 2 ;
— коэффициент линейного термического расширения материала;
T — разность температур;
— коэффициент Пуансона,
(см. Панарин А. П., перевод с японск. Тихонова А.А. «Огнеупоры. Технология строительства и ремонта печей», М., Металлургия, 1980, с. 79).

Для магнезитовых огнеупорных кирпичей
1 = 1,14 10 -5
E 1 = 0,625 10 6 кГ/см 2
1 = 0,16
(см. Гавриш Д.И. «Огнеупорное производство», справочник, том 1 М., Металлургия, 1965, с. 319 и с. 324).

Для металлических пластин
2 = = 11,0 10 -5
E 2 = 2,0 10 6 кГ/см 2
2 = 0,25
Суммарное термическое напряжение, возникающее в футеровке печи, определяется по формуле:

где o — величина термического напряжения в огнеупорных кирпичах;
м — величина термического напряжения в металлических пластинах;
l о — длина огнеупорной кладки по окружности;
l м — длина кладки металлических пластин по окружности.

Для упомянутой выше вращающейся печи определим суммарные термические напряжения на участках зоны спекания существующей футеровки и предложенной.

В зоне факела T = 1600 o C — 300 o C = 1300 o C.

В приграничных участках к зоне факела
T = 1100 o C — 200 o C = 900 o C.

Отношение в зоне факела и в прилегающих к зоне факела участках существующей футеровки равно (металлические пластины и огнеупорные кирпичи по всей зоне спекания уложены в соотношении 1:1).

Отношение в зоне факела предлагаемой футеровки равно 1/100 (металлические пластины и огнеупорные кирпичи уложены в соотношении 1:2) и в прилегающих к зоне факела участках
В соответствии с приведенными выше формулами (1) и (2) суммарные термические напряжения на участках зоны спекания определяют по формуле:

Подставляя значения в формулу (3), получим:
— для существующей футеровки в зоне факела
= 18653,4 кГ/см 2 , а в прилегающих к зоне факела участках = 12913,9 кГ/см 2 ;
— для предложенной футеровки в зоне факела
= 14939,8 кГ/см 2 , а в прилегающих к зоне факела участках = 12913,9 кГ/см 2 .

Футеровка вращающейся печи работает следующим образом.

Уменьшение величины термического напряжения в зоне факела (на участке максимальных температур) с 18653,4 кГ/см 2 в существующей футеровке до 14939,8 кГ/см 2 в предложенной футеровке достигается созданием температурно-компенсационных швов, функцию которых выполняют ряды огнеупорных кирпичей без металлических пластин, между которыми присутствует воздушная прослойка, выполняющая роль кладочного раствора (мертеля).

Читайте так же:
Покрытие стен цементным раствором

В таблице приведены сравнительные данные предлагаемой и существующей футеровок.

Предлагаемая футеровка вращающейся печи позволяет уменьшать величину термических напряжений в зоне факела — на участке максимальных температур на 20% и обеспечить выравнивание термических напряжений на участках зоны спекания. При этом надежность работы футеровки печи повышается, увеличивается срок службы, уменьшается металлоемкость и сокращается время укладки футеровки.

Трубчатые вращающиеся печи

Для термической обработки сыпучих материалов мелкого дробления без их расплавления применяются трубчатые вращающиеся печи. В большинстве своем они представляют собой длинную трубу из устойчивых к высоким температурам материалов, внутри которых, чаще всего встречно-параллельно, движется обрабатываемый материал и горячие газы.

Труба имеет наклон, из-за чего, при вращении, частички нагреваемого материала (шихты) поднимаются на небольшую высоту, падают, сдвигаются вниз. В процессе передвижения по трубе, шихта перемешивается, из-за чего каждая частичка равномерно нагревается. Дополнительное тепло материал получает от разогретого корпуса печи.

Трубчатые печи благодаря высокому коэффициенту теплообмена между продуктами сгорания топлива и нагреваемым веществом нашли широкое применение в различных производственных процессах. С их помощью производится сушка материала с удалением химически связанной влаги. В трубчатых печах производят спекание различных веществ с целью создания новых материалов. Подобные устройства незаменимы в металлургии, для обработки глинозема (спекание и кальцинация) в процессе производства алюминия.

Печь для спекания бокситов

Рис. 1 – Печь для спекания бокситов

Классическим примером трубчатой вращающейся печи является печь, предназначенная для спекания бокситов – материала, содержащего алюминий. Печь состоит из нескольких основных узлов:

— барабан;
— механизм, обеспечивающий вращение;
— опоры роликового типа;
— топливная головка;
— загрузочная камера.

Основной составляющей печи является вращающийся барабан. Его диаметр может варьироваться в пределах от 2 до 3,8 м, длина может достигать 150 м. Барабан футеруется кирпичом. Для футеровки применяется высокоглиноземный или шамотный кирпич.

Нагреваемый материал, шихта, в сухом или насыщенном влагой (40-42%) виде помещается в верхнюю (холодную) камеру. В результате вращения печи шихта медленно движется к нижнему (горячему) концу. В то же время снизу поднимаются продукты горения топлива, высушивая и спекая материал. Продукт спекания, так называемый «спек» достигая нижнего конца трубы, высыпается в охладитель, расположенный под вращающейся печью.

Охладитель (холодильник) конструктивно выполнен в виде барабана длиной до 30 м, с внутренним диаметром до 2,5 м. Внутри охладителя спек охлаждается набегающим потоком воздуха или потоками воды, которой поливают барабан. В случае воздушного охлаждения, нагретый воздух направляется в печь, оптимизируя процесс сжигания топлива, что позволяет значительно увеличить КПД печи.

Топливом для печей может служить природный газ, мазут, угольная пыль. Камера с горелками или форсунками располагается у нижнего конца печи. Отработанные газы проходят несколько степеней очистки, прежде чем быть выброшенными в дымовые трубы. Они направляются в камеры, улавливающие пыль, минуя несколько электрофильтров.

Подготовленная и загруженная печь имеет очень большую массу. К примеру, полная масса печи с барабаном, длиной 70 м может достигать 400 т. Для того чтобы поддерживать трубу и обеспечивать ей возможность вращения используют специальные бандажи, опоясывающие кожух печи. Функцию опоры выполняют ролики, установленные на подшипниках качения.

Вращение барабана осуществляется с помощью мотора. Усилие передается через редуктор на венцовую шестерню, закрепленную на корпусе барабана. Частота вращения может регулироваться и, как правило, составляет от 0,6 до 2 оборотов в минуту.

Монтируется печь под углом к горизонтали. Угол составляет от 3 до 6 %. Для того чтобы не допустить смещения конструкции под воздействием собственного веса применяют упорные ролики. Их размещают горизонтально, бандажи упираются в них сбоку.

Нижний (2) горячий конец барабана присоединяется к топливной головке. Там же расположен канал по которому спек ссыпается в холодильник. Для удобства эксплуатации, топливная головка откатная. Барабан от топливной камеры отделяют лабиринтным уплотнением. Оно представляет собой вращающийся в коробке диск с отверстиями для форсунок.

Холодный (верхний) конец барабана подсоединен к загрузочной камере. Для загрузки сухой шихты используют жесткий патрубок. Жидкую пульпу сливают или распыляют с помощью форсунок. Чтобы избежать слеживания шихты, загрузочная камера оборудована специальным отбойником. Он представляет собой болванку (груз) из стали, висящую на гибком подвесе (цепи). Во время вращения барабана груз раскачивается, разбивая слежавшийся материал.

Тепловой баланс печи

Рис. 2 – Тепловой баланс печи

Рассматривая график температурных показателей барабана можно выделить четыре участка со схожими характеристиками. Выделяют основные участки:

Читайте так же:
Пластификатор для цементного раствора стиральный порошок

— зона сушки;
— зона кальцинации;
— зона спекания;
— зона охлаждения.

Самая высокая температура поддерживается в зоне спекания. Она может подниматься до 1600 °С. Температура отработанных газов на верхнем конце барабана печи снижается до 400-500 °С. Поддержание такого температурного режима гарантирует хорошее спекание и эффективную работу очищающих фильтров.

Расчетное количество тепла на килограмм спека должно находиться в пределах 6300 – 7100 кДж. Производительность, в случае использовании мокрой бокситовой шихты, будет составлять 12 и более тонн спека в час.

Вращающиеся печи

Необходимым условием нормальной работы вращающейся печи является прямолинейность оси вращения ее корпуса. Искривления ее даже в пределах допуска (2-3 мм) вызывают интенсивный износ бандажей, опорных роликов и их подшипников, увеличивают расход энергии, затрачиваемой на вращение печи, ускоряют разрушение огнеупорной футеровки и металлического корпуса.

Традиционные средства контроля геометрических характеристик крупногабаритных объектов не позволяют достигнуть необходимой пространственной точности и оперативности измерений в реальных производственных условиях. Все более широкое применение при выполнении высокоточных измерений при создании и эксплуатации получают роботизированные промышленно-геодезические системы.

Учитывая оперативность проведения измерений в производственных условиях, в режиме реального времени могут быть выявлены критические отклонения от проектных геометрических характеристик (соосность, перпендикулярность, цилиндричность, положение, взаимная ориентация и др.) и применены мероприятия, минимизирующие вредное воздействие нештатной геометрии отдельного элемента, на качество работы всей технологической линии.

В настоящее время большинство промышленно-геодезических систем реализуют координато-определяющую технологию контроля геометрических характеристик крупногабаритных объектов сложной формы. При помощи данных систем на поверхности объекта определяется положение характерных точек (или большего массива произвольно расположенных точек). Используя эти данные, вычисляются различные геометрические характеристики объекта — размеры, положение центра, отклонение от заданной формы, ориентацию объекта в пространстве и относительно других узлов и механизмов, динамические изменения этих характеристик (деформации, смещения).

Выверка вращающихся печей

При выверке вращающихся печей выполняется исполнительная съемка опорных роликов и бандажей на всех опорах, съемка подвенцовой шестерни главного привода. По разработанной методике, специалисты ООО «Промышленные измерения» производят вычисления всех необходимых данных в единой системе координат с привязкой к горизонтальной плоскости. Полученные данные дают возможность анализировать все геометрические характеристики вращающейся печи.
В случае отсутствия видимости между бандажами печи, может потребоваться более одной установки прибора. В этом случае вокруг объекта (вращающейся печи) создается опорная геодезическая сеть, фиксирующая систему координат печи. С каждой отдельной стоянки прибора наблюдается не менее 4 пунктов опорной сети.

Барабанная печь

Бараба́нная печь (барабанная вращающаяся печь, трубчатая печь, барабанная сушилка) — промышленная печь для обжига и сушки сырья и полупродуктов.

Барабанная вращательная печь имеет форму горизонтально расположенного цилиндра диаметром 1,2−5 м и длиной 18−200 м, который медленно вращается вокруг оси. Предназначена для физико-химической обработки сыпучих материалов. Как правило, топливо сжигается внутри печи; менее распространены косвенный нагрев (через стенку муфеля) и комбинированный нагрев обрабатываемого материала. Во вращающейся печи сжигаются пылевидное, твёрдое, жидкое или газообразное топливо. Как правило природный газ. Как правило, в печи греющие газы движутся навстречу обрабатываемому материалу (противоток); менее распространены печи с параллельным током газов и материала.

Содержание

Назначение [ править | править код ]

  • спекание шихт в производстве глинозёма
  • получение цементного клинкера(см. производство цемента)
  • получение силикатной извести(см. производство силикатного кирпича) (сульфидных материалов)
  • обжиг молибденового концентрата

Конструкция [ править | править код ]

  • кожух (барабан)
  • открытая зубчатая передача: венец, шестерня : электродвигатель, редуктор
  • топочная головка (горячая)
  • газоотводящая головка
  • механический питатель
  • горелка
  • система газоочистки
  • холодильник

Печь состоит из горизонтально расположенного цилиндрического кожуха (барабана), футерованного изнутри огнеупорным кирпичом, опорных устройств и привода, головок — топочной и газоотводящей и холодильника.

Барабанные печи могут иметь перегребающие и теплообменные устройства, а также специальные устройства для подачи твёрдых и газообразных материалов в отдельные зоны печи через отверстия в кожухе. Кожух обычно глухой по всей длине, сварен из листового железа толщиной 10—30 мм. Иногда диаметр изменяют по длине печи. При большом диаметре кожух усиливают кольцами жесткости. Изнутри кожух футерован шамотным, магнезитовым или высокоглинозёмистым кирпичом. Снаружи кожуха проложен теплоизоляционный слой. Толщина футеровки обычно 200—300 мм, толщина теплоизоляции 10—30 мм.

Снаружи кожуха закреплены опорные стальные бандажи и большая венцовая шестерня. Бандажи опираются на ролики. Печь вращается со скоростью 0,6—2 об/мин. Мощность электродвигателя 40—1000 кВт.

Принцип работы [ править | править код ]

Печь — это цилиндрическая ёмкость, слегка наклонённая по горизонтали, которая медленно вращается по своей оси. Вещество, которое будет обрабатываться, подаётся в верхний конец барабана. В то время как печь вращается, вещество плавно опускается в нижний конец и подвергается смешиванию и перемешиванию. Горячие газы проходят по печи, иногда в том же направлении, что и обрабатываемое вещество (параллельно), но обычно в противоположном обратном направлении. Горячие газы могут появляться в выносной топке, либо образуются от внутреннего пламени в печи. Это пламя выходит из трубы форсунки (печной форсунки), которая работает как горелка Бунзена. Топливом для этого может быть газ, масло, размельченный нефтяной кокс или молотый уголь.

Читайте так же:
Фиброцементные панели для внутренней отделки под кирпич

Обечайка печи [ править | править код ]

Обечайка изготавливается из решеток прокатанной мягкой стали толщиной от 15 до 30 миллиметров, свариваемые для создания барабана 230 метров в длину, по диаметру 6 метров. Она будет располагаться на восточной/ западной оси для предотвращения вихревого потока. Верхние ограничения по диаметру установлены тенденцией обечайки к деформированию из-за собственного веса по овальному поперечному сечению с последующим прогибом во время вращения. Длина неограничена, но становится сложно справляться с изменениями в длине при нагревании и охлаждении (характерно для 0,1−0,5% длины), если печь слишком большая.

Огнеупорная футеровка [ править | править код ]

Цель огнеупорной футеровки состоит в том, чтобы изолировать стальную обечайку от коррозионных свойств обрабатываемого вещества. Она может состоять из огнеупорных кирпичей или литого огнеупорного бетона, либо может отсутствовать в зонах печи, где температура ниже 250°. Огнеупор выбирается в зависимости от температуры печи и химических свойств обрабатываемого вещества. В некоторых производствах, например в цементном производстве, срок службы огнеупора продлевается с помощью профилактики — обмазки обрабатываемого вещества на поверхности огнеупора. Толщина футеровки обычно в пределе 80−300 миллиметров. Обычный огнеупор будет способен поддерживать перепад температуры в 1000°. Температуру в обечайке нужно поддерживать ниже 350° чтобы сохранить сталь от повреждения. Инфракрасные сканеры непрерывной работы используются, чтобы послать предупреждение о месте прогара негодного огнеупора.

Бандажи и ролики [ править | править код ]

Бандажи, иногда называемые бандажными кольцами, обычно состоят из одинарной литой стали, подвергаются обработке гладкой цилиндрической поверхности, которая неплотно присоединяется к обечайке печи через различные кронштейны. Это требует изобретательности в проектировании, так как сам бандаж должен плотно устанавливаться на обечайку, а также предусматривать тепловое движение. Бандаж крепится на паре стальных роликов, обрабатывается гладкой цилиндрической поверхностью, и устанавливается почти на половину диаметра печи. Ролики должны поддерживать печь и обеспечивать безызносное вращение насколько это возможно. Хорошо спроектированная вращающаяся печь при отключении электроэнергии будет поворачиваться подобно маятнику множество раз перед остановкой. Все обычные печи 6×60 м, включая огнеупоры и устройство подачи весят около 1100 тонн и работают на 3 бандажах и комплекте роликовых механизмов, расположенных по всей длине печи. Самые длинные печи могут иметь 8 комплектов роликовых механизмов, в то время как самые короткие — всего 2 комплекта. Печи обычно вращаются от 0,5 до 2 оборотов в минуту, но иногда быстрее 5 оборотов в минуту. Печи на современных цементных заводах работают на скорости от 4 до 5 оборотов в минуту. Подшипники роликов должны быть способны противостоять большим статическим и внешним нагрузкам, а также должны быть тщательно защищены от тепла печи и проникновения пыли. В дополнение к поддерживающим роликам существуют низкие и высокие поддерживающие роликовые подшипники напротив бандажей, что предохраняет печь от соскальзывания поддерживающих роликов.

Ведущая шестерня [ править | править код ]

Печь обычно вращается при помощи единственной венцовой шестерни, окружающей холодильную часть печной трубы, но иногда вращается при помощи движущихся роликов. Шестерня соединена через движущийся механизм с электродвигателем с переменным числом оборотов. Для этого должен быть пусковой вращатель для запуска печи с большой эксцентричной нагрузкой. Печь в 6 x 60 метров требует около 800 киловатт для вращения на 3х оборотах в минуту. Скорость потока материала в печи пропорциональна скорости вращения, а для такого контроля нужен привод с регулируемой частотой вращения. Гидравлические приводы используются тогда, когда ролики приводятся в движение. У них имеются преимущество в улучшении высокого наддува. Во многих режимах опасно допускать остановку горячей печи при выходе из строя питания привода. Колебания температуры между верхней и нижней частью может вызвать деформацию и повреждение огнеупора. По этой причине предусмотрен дополнительный привод для использования во время отключения электроэнергии. Им может быть небольшой электродвигатель с отдельным электропитанием или дизельным двигателем. Он вращает печь очень медленно, но предотвращает повреждение.

Внутренние теплообменники [ править | править код ]

Теплообмен во вращающейся печи может происходить посредством теплопроводности, конвекции и теплового излучения. В низкотемпературных процессах, и холодильных частях больших печей имеется нехватка предподогревателей, так как печь зачастую снабжена внутренними теплообменниками чтобы способствовать теплообмену между газом и сырьём. Они могут состоять из воздухозаборников совкового типа или «лифтёров», которые последовательно включают подачу через газовый поток, либо могут быть металлическими вкладышами, нагревающими в верхней части печи, и передавать тепло в систему подачи, хотя и скрываются ниже поверхностной влажности в момент вращения печи. Самый простой теплообменник состоит из каналов, держащихся на подкладках поперёк потока газа.

Читайте так же:
Состав жидкости стеклоиномерного цемента

Другое оборудование [ править | править код ]

Печь соединяется с выходным чехлом на штабель в нижнем конце и с газоходами выходящих газов. Для этого нужно газонепроницаемое уплотнение в другом конце печи. Выхлопной газ может отправляться в утиль, либо входить в предподогреватель с входящей подачей. Газы должны проходить через печь, в случае, если предподогреватель оснащён вентилятором, расположенным на выходном конце. Для установки предподогревателя, когда может происходить высокий перепад давления, нужна большая мощность для вентилятора. Зачастую, вентилятор является самым большим приводом в системе печи. Выхлопные газы могут содержать в себе пыль, и могут быть нежелательные составляющие, такие как, диоксид серы и хлористый водород. Оборудование устанавливается во избежание прохода газов в атмосферу.

Полезная отдача тепла [ править | править код ]

Полезная отдача тепла вращающейся печи составляет примерно 50-65% [1] .

Технология [ править | править код ]

Шихта и топливо поступают в печь обычно с противоположных концов печи. Шихта движется вследствие вращения и некоторого наклона самой печи (например, 1,5 %).

Бетон.ру

Последовательность технологических операций производства портландцемента сухим способом такая же, как и при мокром , однако при подготовке сырьевых смесей имеются существенные отличия, зависящие от влажности и твердости сырья. При переработке сырья повышенной твердости и умеренной влажности принципиальная технологическая схема имеет вид. Высокая твердость измельчаемых материалов требует предварительного их дробления. Тонкое измельчение материалов может производиться при влажности не более 1%. В природе такое сырье практически не встречается, поэтому обязательная операция сухого способа производства-сушка.

Желательно совмещать ее с размолом сырьевых компонентов. На большинстве новых предприятий, работающих по сухому способу производства, в шаровой трубной мельнице совмещаются процессы сушки, тонкого измельчения и перемешивания всех компонентов сырьевой смеси. Из мельницы сырьевая смесь выходит в виде тонкодисперсного порошка — сырьевой муки. В железобетонных силосах производятся корректировка ее состава до заданных параметров и гомогенизация перемешиванием сжатым воздухом. Готовая сырьевая смесь поступает на обжиг. Вращающиеся печи сухого способа производства оборудованы запечными теплообменными устройствами (циклонными теплообменниками). В них за несколько десятков секунд сырьевая смесь нагревается до 700-800°С, дегидратируется и частично декарбонизируется. Завершается обжиг клинкера во вращающейся печи. Необходимость экономии расхода топлива вынуждает перерабатывать по сухому способу материалы со все более высокой влажностью.

Технологическая схема производства портландцемента из такого сырья выглядит следующим образом. Предварительное измельчение материалов повышенной влажности при сухом способе целесообразно осуществлять в мельницах самоизмельчения типа «Аэро-фол», позволяющих перерабатывать сырье с влажностью до 25%. Однако полностью высушиться сырье при этом не успевает и в шаровой мельнице одновременно с доизмельчением крупных частиц и получением однородной сырьевой смеси производится ее досушка. Приготовление сырьевой смеси в виде порошка усложняет технологическую схему. Увеличивается число энергоемкого оборудования, более «капризного» при эксплуатации. Сложнее при сухом способе обеспечить санитарные условия и охрану окружающей среды. Но решающим его преимуществом является снижение расхода теплоты на обжиг клинкера до 3,4-4,2 МДж/кг. Кроме того, на 35-40% уменьшается объем печных газов, что соответственно снижает стоимость обеспыливания и дает больше возможностей по использованию теплоты отходящих газов для сушки сырья. Важнейшее преимущество сухого способа — более высокий съем клинкера с 1 м3 печного агрегата. Это позволяет проектировать и строить печи по сухому способу в 2-3 раза более мощные, чем по мокрому.

В целом по технико-экономическим показателям сухой способ превосходит мокрый . При использовании мощных печей он обеспечивает снижение удельного расхода топлива на обжиг клинкера примерно вдвое, рост годовой выработки на одного рабочего примерно на 40%, уменьшение себестоимости продукции на 10% и сокращение капиталовложений при строительстве предприятий на 50%. Это обусловило интенсивное его распространение в мировой цементной промышленности. Однако надо учитывать, что возможности применения сухого способа ограничены влажностью перерабатываемого сырья. Переработка сырья с влажностью более 20-25% по сухому способу связана с высокими расходами теплоты на сушку, и этот способ становится неэкономичным.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector