Intekoufa.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент теплопроводности кирпича в сравнении с другими материалами

Коэффициент теплопроводности кирпича в сравнении с другими материалами

Кирпич – настолько известный стройматериал, что используется практически везде, даже для замены бетона или дерева. Из этого строительного материала можно строить небольшие дачные домики или крупные стратегические объекты, а популярность кирпича из любого природного материала обусловлена его обоснована прочностью, долговечностью и другими параметрами, среди которых теплопроводность красного кирпича, высокие характеристики шумо- и теплоизоляции, и другие показатели. В индивидуальном строительстве главное не только долговечность жилья, но и тепло в доме, поэтому коэффициент теплопроводности силикатного кирпича играет решающую роль при выборе строительных материалов, а сравнить эксплуатационные характеристики этих строительных изделий можно с деревом или ячеистым бетоном, так как это – главные конкуренты кирпича в частном жилищном строительстве.


Сравнение теплопроводности кирпича и пеноблока

Используемые виды


теплопроводность кирпичной стены

Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори. Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены.

В настоящее время активно распространены несколько видов. Среди них выделяют следующие:

  • белый (силикатного типа);
  • (глиняный).

Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:

  1. В составе керамического лежит глина и различные добавки.
  2. Силикатный получают из кварцевого песка, извести и воды.

Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

  1. Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
  2. По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Технологии

Состав и назначение в использовании


Теплопроводность пустотелого керамического кирпича

Здесь принята градация. Она идет по следующим функциям:

  • строительная (возводят поверхности);
  • специальная (для сооружения печной трубы, камина или простой печи);
  • облицовочная (с его помощью облагораживают фасады).

Если решено использовать полнотелый вид, то следует знать, что в таком блоке будет не больше 13% пустот и он подойдет для того, чтобы возводить поверхности, колонн, столбов и так далее. Как повлияет на характеристики кирпича теплопроводность? В этом случае нельзя сказать о слишком больших данных по сопротивлению к отдаче тепла (в связи с этим стены домов необходимо будет дополнительно утеплять).

Теплопроводность пустотелого керамического кирпича во много раз больше. Это связано с тем, что объем его пустот достигает 45% от общего. Все это сказывается в его весе, который гораздо меньше предыдущего вида. Такие блоки можно смело использовать в строительстве как внутренних перегородок, так и внешних фасадов. Им обычно принято заполнять каркасы у зданий с большим количеством этажей. Главный бонус здесь будет заключаться в том, что теплопроводность клинкерного кирпича с пустотами внутри имеет отличные показатели (но это правило действует в том случае, когда раствор делают достаточно густым, чтобы он не забивал воздушные полости).

Теплопроводность керамического кирпича монгал из огнеупорного кирпича Красный

Какой должна быть теплопроводность: нормы

Подбор строительного материала производится с учетом их способности предотвращения потери тепловой энергии. Коэффициент теплопроводности облицовочного кирпича обязательно учитывают при составлении плана строительства при выборе материалов. Для каждого региона существуют рекомендуемые цифры, при которых дом зимой будет теплым, а летом прохладным. Лучше при планировании строительства, заложить толщину несущих стен немного выше рекомендованной.

Чтобы правильно вычислить толщину стен пользуются формулой: r = (толщина кирпичной кладки, м)/(теплоотдача, W/(m * K)). Значение r это показатель теплоотдачи кирпичной стены. Во время проведения расчетов обязательно нужно учесть предполагаемую влажность помещений и климата.

Любые нарушения технологии строительства способны увеличить теплоотдачу. К примеру, слишком жидкий раствор глубоко проникает в щели кирпича в пустоты, что ухудшает показатели теплоотдачи.

Для сбережения тепла в холодный период используют следующие способы:

  • Включают в строительство энергосберегающие материалы как кирпичи пустотелые.
  • Запланированное строительство с применением щелевого кирпича предусматривает использование только густого раствора.
  • Применяют изоляционные материалы в прослойке между несущими стенами и облицовкой.
  • На поверхность стен наносят защитный слой штукатурки.
  • Утепляют стены облицовочным кирпичом, у которого привлекательный внешний вид и отличные теплотехнические характеристики.

Лучше заложить в проект закупку облицовочного материала на 10% больше требуемого.

Облицовочный кирпич это эффектный внешний вид и сохранение тепла

Коэффициент теплоотдачи кирпича: общие сведения


Коэффициент теплоотдачи кирпича

Теплопроводность кирпича характеризуется способностью проводить энергию тепла. Такой «талант» принято выводить в специальном показателе. Каждый вид будет представлять свои данные в этом отношении:

  1. Клинкерный кирпич теплопроводность имеет в диапазоне от 0,8 до 0,9 Вт/м К.
  2. Теплопроводность силикатного кирпича зависит от количества содержащихся в нем пустот (для щелевого он будет равен 0,4 Вт/м К), у имеющего технические пустоты цифра поднимается до 0,66, а у полнотелого варианта данные уже будут составлять 0,8 Вт/м К.
  3. Керамический кирпич коэффициент теплопроводности также имеют разный (в зависимости от представленного вида): коэффициент теплопроводности полнотелого кирпича дает цифры от 0,5 до 0,8, щелевой имеет 0,34-0,43, а поризованный — 0,22 Вт/м К. Теплопроводность керамического кирпича с порами внутри будет равна примерно 0,57 Вт/м К (однако даже эти цифры могут зависеть от пор, расположенных в нем).
Читайте так же:
Расход кирпича для камина

В рамках этого анализа обязательно надо отметить, что коэффициент теплопередачи кирпича еще не самый высокий — газобетон, к примеру, еще лучший проводник. Чтобы возводимые здания были по-настоящему теплыми, нужно при возведении сочетать многие составляющие, главным из которых будет количество пор.

Что влияет на показатели?

Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:

  • Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
  • Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
  • Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
  • Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.

При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.

Все познается в сравнении: возможности использования


теплопроводность глиняного кирпича

Цифры могут варьироваться у каждого из вышепредставленных видов. Свой коэффициент теплопроводности силикатный кирпич зарабатывает еще и от веса каждого из блоков. Отсюда вывод: если решено строить именного из него, то следует обращать внимание на размеры брусков (меньше размер — больше коэффициент теплопроводности силикатного кирпича). Нельзя забывать одну главную вещь: при относительной дешевизне такого товара, к нему должны идти еще и дополнительные утеплители.

Коэффициент перевода кирпича-клинкера показывает прекрасные данные. Но даже с ними его очень редко выбирают для того, чтобы возвести поверхность. А вот мощение дорожного полотна или полы в помещениях пройдут на «ура». И уже сам высокий коэффициент теплопроводности кирпича такого вида указывает на то, что его не следует брать для того, чтобы возвести какие-либо утепленные конструкции.

Когда речь идет именно о специальном виде, нельзя не упомянуть тот материал, который используется для строительства каминов и им подобных вещей. Его состав предполагает быструю отдачу тепла, а, значит, коэффициент теплопроводности шамотного кирпича будет колебаться от 0,6 до 0,7 Вт/(моС).

Исходя из всего вышесказанного, можно сделать главный вывод — самым популярным для использования будет являться пустотный, а коэффициент теплопроводности кирпича красного позволяет его выделить среди других в качестве примера, какой должна быть теплопроводность глиняного кирпича. Развитая пустотная система внутри него справится с этим на «отлично».

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Силикатный тёплый кирпич

Ограждающие стены из газобетона с облицовкой из силикатного кирпича, поэтажно опирающиеся на перекрытие, широко приме­няются в конструкциях монолитных и каркасно-монолитных жи­лых зданий. И сметные расчеты, и практика строительства пока­зали экономическую эффективность и технологичность.

Конструкция ограждающей стены

Коэффициент теплопроводности сухого полнотелого силикат­ного кирпича — 0,56 Вт/(м • ºС), а кладки из него — 0,69 Вт/(м•ºС). Теплопроводность кладки полнотелых керамическихкирпи­чей составляет 0,98 Вт/(м • ºС). Как видно, коэффициент теплопро­водности полнотелого силикатного кирпича меньше коэффициента теплопроводности полнотелого керамического кирпича, значит, тепло он держит лучше. Поэтому для строительства фасадов зданий целесообразно использовать силикатный кирпич, который имеет лучшие теплоизолирующие свойства. Силикатный кирпич пре­восходит керамику, по морозостойкости, и в варианте полнотелой окраски привлекает архитекторов возможностями выразительно­го оформления фасадов.

Газобетон как теплоизоляционный материал получил широкое распространение в каркасно-монолитном строительстве.

Комбинированная конструкция из кирпича и газобетона нахо­дится подвнешними климатическими воздействиями, с одной стороны, и под воздействием пара, возникающего внутри помещений и движущегося наружу, с другой стороны. Стеновые заполнения из газобетона с наружной облицовкой кирпичом выполняют как с воздушной прослойкой, так и без нее.Прослойку используют для предупреждения переувлажнения газобетонногослоя ограждающей стены.

Читайте так же:
Станок агат изготовление лего кирпича

Сопротивление передаче

Требуемое сопротивление теплопередаче

Определим требуемое сопротивление теплопередаче R ˳ᵐᵖжилого здания, например, в Санкт-Петербурге или каком-либо другом районе Северо-Запада с нормальным влажностным режи­мом помещения. При проектировании ограждающих конструкций должны со­блюдаться нормы строительной теплотехники согласно СНиП 11-3-79 «Строительная теплотехника».

Исходя из санитарно-гигиенических и комфортных условий:

Коэффициент теплопередачи

Здесь n=1 — коэффициент, принимаемый в зависимости от положения наружной поверхности стены по отношению к наруж­ному воздуху;
tB= 20 O C— расчетная температура внутреннего воздуха со­гласно ТСН 23-340-2003 «Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите»;
tH= -26 O C— расчетная зимняя температура наружного воз­духа, равная средней температуре наиболее холодной пятидневке с обеспеченностью 0,92;
Dt H =-4 O C — нормативный температурный перепад между тем­пературой внутреннего воздуха и температурой внутренней по­верхности;
aB— коэффициент теплоотдачи внутренней поверхности стены.

Напомним, что число градусо-суток отопительного периода для Санкт-Петербурга будет ГСОП = 7796 o C /сут.. Здесь, согласно СНиП 23-01-99 «Строительная климатология», z= 220 дней — продолжительность периода со средней су­точной температурой меньше 8 градусов С, а 1,8 С — средняя температура этого периода.

В результате получаем значение сопротивления теплопередаче наружных стен, рассчитанное по предписываемому подходу, — 3,08. Выбирая наибольшее значение, окончательно получаем R ˳ᵐᵖ =3,08 м²*ºС/Вт.

Термическое сопротивление ограждающей конструкции

Требуемое сопротивлениетеплопередаче применительно к рас­сматриваемой конструкции стены будет определять лишь мини­мальную толщину теплоизолирующего газобетонного слоя. Вы­бор проектной толщины слоя должен являться результатом тех­нико-экономических расчетов. При этом подход к таким расчетам зависит от задач инвестора и заказчика-застройщика в инвестиционном проекте строительства здания. Если задача заключается в минимизации себестоимости квадратного метра площади, то тре­буется и минимальная толщина газобетона. Если инвестор и заказчик-застройщик исходят из интересов собственника или пользова­теля жилых помещений, то увеличение толщины газобетона следу­ет рассматривать как инвестиционный проект, направленный на экономию теплопотерь. Для расчетов необходимо задаться вопро­сами внутренней нормы рентабельности, прогнозируемой цены на тепловые ресурсы и многими другими.

Ни первая (относительно простая), ни вторая задача не явля­лись целью вопросами работы. Чтобы показать возможность обе­спечения приемлемых характеристик ограждающей конструкции, выберем толщину газобетонной кладки, исходя из сложившейся практики. Толщину кладки силикатного лицевого пустотелого кир­пича определим по его геометрическими размерам, толщину воз­душной прослойки между кирпичем и газобетоном — технологи­ческой реализуемостью.

Н.И. ВАТИН , д. т. н.,проф., зав. кафедрой «Технология, организация и экономика строительства» инженерно-строительногофакультета ГОУ СПбГПУ,Г.И. ГРИНФЕЛЬД ,начальник отдела техническогоразвития

компании « АЭРОК », О.Н. ОКЛАДНИКОВА , инженер ГОУ СПбГПУ,С.И. ТУЛЬКО , генеральный директор Павловского завода строительных материалов

Керамический поризованный кирпич, отличия от пустотелого и преимущества применения в современном строительстве

Керамический поризованный кирпич, отличия от пустотелого и преимущества применения в современном строительстве

Сегодня в ycлoвияx pазвития строительного рынка постоянно появляются новые стройматериалы и технологии. Таким строительным мaтeриaлoм и cтaл пopизoвaнный кepaмичecкий кирпич (камень пopизoвaнный). Камень поризованный имeeт пopиcтyю стpyктуpy; плотность y поpизовaннoгo кирпича почти нa тpeть ниже, чем у пoлнoтeлoгo строительного кирпича; пopизoвaннaя кepaмикa пoзволяeт значительно yвeличить теплоcбepeгaтeльный эфеект cтeн. Пopизoвaнный кepамичecкий кирпич изгoтaвливaeтcя только с иcпoльзoваниeм нaтypaльныx мaтepиалoв. Таким обрaзoм, пopизoваннaя кepамикa oтвeчaeт высочайшим тpeбoвaниям экoлoгичнocти.

Кроме того, использование в строительных paбoтaх пopизoвaнногo кеpaмичeскoгo кирпича дает вoзмoжноcть значительно экономить cpeдствa на мaтеpиaлax. Благодаря техническим cвoйствaм и гaбapитaм тaкoго кирпича, дoпycкaется стенная кладка значительно тoньшe, чем в cлyчae с клacсичecкими кирпичами. Пpи этом не страдают пoкaзaтeли теплоизоляции и пpoчнocти строения. Из-за бoлee больших размеров кирпича и более тoнкиx стeн yмeньшaетcя кoличecтвo швoв, что пoзвoляет cущecтвeннo снизить paсxод цементного строительного pacтвopa. Также yмeньшaeтcя paбoчeе вpeмя, кoтоpoe нeобxoдимo для yклaдки.

Теплопроводность кирпича

Качество дома оценивается по многим факторам, одним из которых является способность удерживать тепло. Теплопроводность кирпича влияет на этот показатель. Поэтому перед началом строительства или утепления здания учитывается это свойство стройматериала. Популярным и доступным средством для возведения стен является керамический кирпич. Так как большинство его видов обладают слабой теплоизоляцией, то этот недостаток компенсируется с помощью термоизоляционных конструкций.

Что это такое и что на них влияет?

Теплопроводностью называется процесс, который происходит внутри материала при передаче тепловой энергии между частицами или молекулами. При этом более холодная часть получает тепло от более нагретой. Энергетические потери и выбросы теплоты происходят в материалах не только в результате процесса передачи тепла, но и при излучении. Это зависит от того, какова структура данного вещества.

Каждый строительный компонент имеет определенный показатель проводимости тепла, полученный опытным путем в лаборатории. Процесс распространения тепла неравномерен, поэтому выглядит на графике как кривая. Теплопроводность – физическая величина, которая традиционно характеризуется коэффициентом. Если посмотреть в таблицу, можно легко заметить зависимость показателя от условий эксплуатации данного материала. Расширенные справочники содержат до нескольких сотен видов коэффициентов, определяющих свойства различных по строению стройматериалов.

Для ориентира при выборе в таблице указывают три условия: обычные – для умеренного климата и средней влажности в помещении, «сухое» состояние материала, и «влажное» – то есть эксплуатацию в условиях повышенного количества влаги в атмосфере. Легко заметить, что у большинства материалов коэффициент возрастает с увеличением влажности окружающей среды. «Сухое» состояние определяется при температурах от 20 до 50 градусов выше нуля и нормальном атмосферном давлении.

Если вещество используется как теплоизолятор, показатели выбирают особенно тщательно. Пористые структуры сохраняют тепло лучше, а более плотные материалы отдают его сильнее в окружающую среду. Поэтому традиционные утеплители обладают самыми низкими коэффициентами теплопроводности.

Как правило, для строительства подходит оптимально стекловата, пено- и газобетон с особо пористой структурой. Чем плотнее материал, тем большей теплопроводностью он обладает, следовательно, передает энергию в окружающую среду.

Закон Фурье вкратце

Для более глубокого исследования теплопроводности и теплового потока, с учетом площади поперечного сечения ученым Фурье был выведен специальный закон, показывающий, благодаря чему существующие материалы прекрасно задерживает тепло и улучшают свою изоляцию.

Читайте так же:
Пресс по производству керамических кирпичей

Величина степени переноса теплоты обозначается специальным коэффициентом (КТ) – λ, а тепловая энергия измеряется в Вт. Последняя уменьшает свой уровень при прохождении расстояния в 1 мм с различием температуры на 1 градус. В итоге меньшая потеря энергии выгоднее, а стройматериал с небольшим КТ относится к более теплому.

Теплопроводный параметр большой мерой обусловлен плотностью, при уменьшении ее уровня понижается и тепловой показатель. То есть плотные тяжелые экземпляры обладают повышенным значением Т, а более легкий вес и меньшая прочность указывает на небольшую Т. Для повышения Т влияют на состав материала, его плотность, соблюдение методики изготовления, влаговместимость.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Понятие о теплопроводности

Эта характеристика имеет важное значение в строительстве. Существует несколько взаимосвязанных вариантов подхода к оценке движения тепла в материалах:

  1. Способность предметов передавать нагрев от одной части целого к другой посредством последовательного перемещения хаотически колеблющихся частиц тела (молекул, электронов и атомов) от подвижных в сторону неактивных — холодных — называют теплопроводностью. Не следует путать этот показатель с термическим сопротивлением, которое свидетельствует о способности препятствовать перемещениям нагретых молекул.
  2. Коэффициент теплопроводности λ – способность физического тела передавать энергию за определённое время через единичную площадь при падении температуры на градус к наикратчайшей длине до изотермической поверхности. Другими словами, λ показывает, сколько тепла теряется за период прохождения сквозь стену. Принятая в технических расчётах размерность показателя — Вт/м·°C.
  3. Удельная теплопроводность Λ=λ/δ, где δ – толща преграды в метрах: Вт/м²·°C. Обратной величиной этой характеристики является термическое сопротивление: 1/Λ – оно оценивает препятствование 1 м² площади предмета перетоку энергии нагрева за час при разности температур поверхностей в 1°C. Другое название характеристики — коэффициент теплоизоляции, размерность: м²·°C/Вт.

В этом видео вы узнаете о характеристиках кирпича:

При выборе материалов обычно обращают внимание на 2 показателя: термическое сопротивление, определяемое из соотношения 1/(λ/δ), и гораздо чаще применяемый коэффициент теплопроводности λ. Если значения первой характеристики возрастают, это свидетельствует о возможности употребить материал для изоляции. И наоборот, низкие цифры указывают на использование в качестве проводника температуры. Чем выше коэффициент теплопроводности, тем потери нагрева здания весомее, а малые значения свидетельствуют об эффективном в части энергосбережения материале стен.

По назначению кирпич подразделяется на строительный, специальный и облицовочный. Строительный применяется для кладки стен, облицовочный – для дизайна фасадов и интерьера, а специальный идет на фундаменты, дорожное покрытие, кладку печей и каминов.

Более узкая специализация обусловлена различной структурой изделий.

Полнотелый кирпич

Представляет собой сплошной брусок со случайными пустотами, составляющими менее 13 %.

Полнотелыми бывают кирпичи:

Силикатный, керамический – используются для возведения самонесущих стен, перегородок, колонн, столбов и так далее. Конструкции из полнотелого кирпича надежны, морозоустойчивы, способны нести дополнительные нагрузки. Перегородки обеспечивают хорошую звукоизоляцию при небольшой толщине, сохраняют большое количество тепла.

К тому же материал довольно декоративен и популярен у многих современных дизайнеров. Но высокий коэффициент теплопроводности и водопоглощения вынуждает сооружать наружные стены большой толщины или делать их трехслойными, сочетая с изоляционными материалами и другими видами кирпича.

Шамотный – изготавливается из специальной огнеупорной измельченной глины и порошка шамота путем обжига с повышенным температурным режимом. Применяется для выкладки каминов, печей и других сооружений, где требуется огнеупорность. Специфика применения определила большое разнообразие форм изделия:

  • клиновидные и прямые;
  • больших средних и малых размеров;
  • фасонные с профилями различной сложности;
  • специальные, лабораторные и промышленные тигли, трубки и другой инвентарь.

Клинкерный – изготавливается из тугоплавких глин с разнообразными добавками. Обжигается при очень высоких температурах до полного запекания. Различные компоненты и вариативность режима обжига придают кирпичам повышенную прочность, водостойкость и широкую палитру оттенков от зеленоватого, при обжиге с торфом, до бордового с угольными подпалами. Раньше широко применялся для мощения тротуаров, теперь используется в кладке и облицовке фундаментов. Теплопроводность керамического кирпича довольно высока.

Читайте так же:
Сколько запаса кирпича брать

Пустотелый кирпич

Материал допускает 45 % пустот от общего объема, а также отличается по форме, структуре и расположению пустот в бруске. Теплопроводность пустотелого кирпича напрямую зависит от количества воздуха в его теле – чем больше воздуха, тем лучше теплоизоляция.

Кирпич с пустотами – брусок с двумя-тремя большими сквозными отверстиями, которые служат скорее облегчению и удешевлению, нежели улучшению теплоизоляции. Применяется наравне с полнотелым аналогом, за исключением фундаментов и других конструкций, требующих повышенной прочности.

Щелевой кирпич – все тело блока пронизано отверстиями различной формы размеров.

  • прямоугольными;
  • треугольными;
  • ромбовидными;
  • сквозными и закрытыми с одной стороны;
  • вертикальными и горизонтальными.

Довольно хорошая прочность и низкая теплопроводность определяют его востребованность для возведения наружных стен жилых зданий.

Важно! Горизонтальное расположение пустот значительно снижает прочность материала.

Поризованный кирпич – выпускается нескольких размеров. Кроме большого числа отверстий обладает пористой структурой материала, которая образуется при выгорании специальных мелких фракций, добавленных в глину. Обладает лучшим набором качеств для строительства наружных стен. Прочность, низкая теплопроводность и большие габариты сокращают сроки строительства в разы, при этом с соблюдением последних требований СНиП. Теплая керамика характеризуется самыми низкими показателями теплопроводности, но из-за хрупкости пока имеет ограниченное применение.

Облицовочный кирпич – тоже является пустотелым, удачно сочетая художественные и утеплительные свойства.

Таблица показателей теплопроводности строительных материалов

Наименование материалаКоэффициент теплопроводности, Вт/(м*К)
Блок керамический0,17- 0,21
Поризованный кирпич0,22
Керамический щелевой кирпич0,34–0,43
Силикатный щелевой кирпич0,4
Керамический кирпич с пустотами0,57
Керамический полнотелый кирпич0,5-0,8
Силикатный кирпич с пустотами0,66
Силикатный кирпич полнотелый0,7–0,8
Клинкерный кирпич0,8–0,9

Почти всегда в строительстве дома для разных конструктивных элементов используются несколько видов кирпича с соответствующими характеристиками.

Величина показателя красного кирпича

Для полнотелого красного кирпича характерна самая низкая способность к сохранению тепла, составляющая 0,6-0,8 Вт/м*К. По этой причине возводить энергоэкономичные сооружения целесообразно из пустотелых изделий. Их показатели теплопроводности намного ниже и составляют около 0,56 Вт/м*К.

Теплопроводность кирпича зависит не только от производственной технологии. Этот показатель находится в зависимости от множества факторов: влажности, объемного веса, пористости (размера пор материала). Достаточная плотность и пустотность этого изделия, составляющая 40-50%, соответствует показателю Т, равному 0,2-0,3 Вт/м*К. При этом толщина стен должна быть значительно меньше, чем в постройках из силиката.

Коэффициент теплопроводности, единица измерения которого исчисляется в ваттах, определяет количество тепла, способного проникнуть через кирпичную стену, имеющую метровую толщину.

Разница температуры должна составлять в 1°C по обе стороны стены. Чем выше данное значение, тем хуже характеристики коэффициента.

Наиболее важным свойством шамотного кирпича является тепловой эффект, что следует учитывать в процессе кладки печей и каминов. Чтобы обеспечить тепло в жилье, необходимо выбирать строительные материалы, обладающие низким коэффициентом теплопроводности, единицей измерения которого являются Вт/м°С или Вт/м*К.

Газоблок или керамический блок? Что дешевле в итоге?

Известно, что строительство дома целиком из кирпича — очень затратно. Поэтому чаще всего выбираются наиболее экономичные альтернативные материалы, например, газобетонные и керамические блоки. При этом газоблокам все же отдают гораздо больше предпочтения. Потому что дешевле. И это действительно так! Например, при строительстве дома площадью 100-150 м 2 экономия, если брать только на блоки, может составить 150-250 тыс. рублей. Заманчиво, не правда ли? Керамоблоки же, соотвественно, подороже, да и "обросли" множеством мифов: трескаются, плохо сохраняют тепло, дорогие и прочие. Но на самом дела картина совершенно иная.

Забегая наперед, если взять все затраты, а не только стоимость 1 м 3 , то оказывается, что при выборе теплоэффективных керамоблоков экономия может составит до 150 тысяч рублей! Ниже будет приведена примерная таблица расчетов.

При этом по всем основным характеристикам качественные керамика превосходит газосиликатные / газобетонные блоки:

  • марка прочности керамических блоков — М75, газосиликатных D500 — М35-М50;
  • термическое сопротивление 3,73 м 2 *С/Вт у керамоблоков против 3,25 м 2 *С/Вт у газоблоков D500.

Рассмотрим подробное сравнение по характеристикам

Для сравнения возьмем керамоблок Керакам Кайман 30 и газоблок D500 (500кг/м 3 ).

Прочность

Прочность характеризуется максимальным давлением распределённой нагрузки и количеством килограмм сил (кгс) к 1 см 2 поверхности материала. Керамический блок Керакам Кайман 30 имеет марку прочности М75 (означает, что на 1 см 2 способен выдержать нагрузку в 75 кг). Значение марки прочности газосиликатного блока D500 у разных производителей колеблется в пределах от М35 до М50.

При такой прочности, каждый третий ряд кладки газоблоков требует армирования

Кладка из керамоблоков требует армирования только по углам (на 1м в каждую сторону). Никакого штробления и арматуры!

Способность сопротивления теплопередаче

Керакам Kaiman 30, с облицовкой пустотелым кирпичом

Общая толщина стены без учёта штукатурного слоя 430мм (300мм керамический блок + 10мм технологический зазор, заполняемый цементно-перлитовым раствором + 120мм лицевая кладка).

1 слой (поз.1) – 20мм теплоизоляционная цементно-перлитовая штукатурка (коэффициент теплопроводности 0,18 Вт/м*С).
2 слой (поз.2) – 300мм кладка стены керамоблоком (коэффициент теплопроводности в эксплуатационном состояние А 0,094 Вт/м*С).
3 слой (поз.4) — 10мм лёгкая цементно-перлитовая смесь между основной и лицевой кладкой (плотность 200 кг/м3, коэффициент теплопроводности при эксплуатационной влажности менее 0,12 Вт/м*С).
4 слой (поз.5) – 120мм кладка стены с применением щелевого облицовочного кирпича (коэффициент теплопроводности в эксплуатационном состояние 0,45 Вт/м*С.

поз. 3 — тёплый кладочный раствор
поз. 6 — цветной кладочный раствор.

Газосиликатные блоки D500, с облицовкой пустотелым кирпичом

Общая толщина стены без учёта штукатурного слоя 535мм (375мм газоблок + 40мм вентиляционный зазор + 120мм лицевая кладка).

Читайте так же:
Характеристики дерево кирпич пенопласт

1 слой (поз.1) – 20мм теплоизоляционная цементно-перлитовая штукатурка (коэффициент теплопроводности 0,18 Вт/м*С).
2 слой (поз.2) – 375мм кладка стены (коэффициент теплопроводности кладки в эксплуатационном состояние 0,123 Вт/м*С).
4 слой (поз.5) – 120мм кладка стены с применением щелевого облицовочного кирпича (коэффициент теплопроводности кладки в эксплуатационном состояние 0,45 Вт/м*С.

* – слой кладки облицовочного кирпича в расчёте термического сопротивления конструкции не учитывается, т.к. согласно инструкции производителя газосиликатных блоков, лицевая кладка ведётся с устройством вентиляционного зазора, и обеспечением в нём свободной циркуляции воздуха. Связано это с тем, что паропроницаемость газосиликата в полтора раза выше паропроницаемости керамики.

Отметим, что кладка несущей стены из газосиликатных блоков в случае облицовки дома кирпичом без вентиляционного зазора — не допустима!

Сравнение затрат

Ниже представлен расчёт затрат на возведение одного квадратного метра внешней стены с применением сравниваемых материалов, а также разница в затратах на фундамент, т.к. при выборе газосиликатного блока с толщиной 375мм толщина стены фундамента увеличится на 75мм плюс вентиляционный зазор 40мм, т.е. на 105мм.

Исходные условия

Общая площадь дома – 142,55 м 2 .
Площадь внешних стен за вычетом оконных и дверных проёмов – 189 м 2 .
Периметр ленты фундамента под внешние стены – 42,00 погонных метров.
Фундамент — железобетонный монолитный ленточный.
Отделка фасада — облицовочный кирпич.

Газосиликатные блоки D500 (375мм)

Керамический блок Керакам Kaiman 30 (300мм)

Стоимость блоков
на 1м
2 кладки

толщина стены 375мм (0,375 метра)
цена 1 м 3 блока с доставкой 3 200 рублей
1м 2 = 3 200×0,375 = 1 200,00 руб/м 2

1м 2 кладки — 17,1 блоков
цена блока с доставкой 95 руб/шт
1м 2 = 17,1×95 = 1 624,50 руб/м 2

Стоимость раствора
на 1м 2 кладки

кладочный шов 2мм с применением
цементно-песчаного модифицированного клея
150 руб/м
2

кладочный шов 12мм с применением
тёплого кладочного раствора
240 руб/м
2

Стоимость анкеров для
связи несущей стены с
лицевой кладкой

стоимость анкера 12,90 руб/шт
количество анкеров на 1м 2 — 5 шт
1м 2 = 12,90×5 = 64,50 руб/м 2

стоимость анкера 6,40 руб/шт
количество анкеров на 1м 2 — 5 шт
1м 2 = 6,40×5 = 32,00 руб/м 2

Стоимость перлитового
раствора для заполнения
технологической пустоты

между несущей стеной и
лицевой кладкой
на 1м 2 кладки

раствор готовится на объекте,
используется перлитовый песок
и цемент, при заполнении шва в 10мм,
стоимость — 25 руб/м 2

Стоимость сетки,
необходимой для экономии
кладочного раствора

на 1 м 2 кладки

используется штукатурная сетка с ячейкой 5×5мм,
стоимость — 33 руб/м 2

Стоимость материалов
для армирования кладки

на 1м 2 кладки

Стоимость арматуры для порядного
армирования 21 руб/пог.м.
По инструкции полагается армировать
каждый ряд, выполняя 2 штробы.
Для рассматриваемого Вами дома
потребуется 727 пог.м арматуры.

Стоимость клея, необходимого для
укрытия одного погонного метра
армирования — 6,5 руб/пог.м.

Стоимость работ по армированию
кладки 50 руб/пог.м.

Стоимость армирования кладки на один
квадратный метр кладки:
(727 пог.м. х (21 руб/пог.м.+ 6,5 руб/пог.м.+
+50 руб/пог.м.)) / 215м 2 = 262 рубля/м 2 .

Стоимость базальтопластиковой сетки
145 рублей/м 2 .
По инструкции следует армировать
углы кладки, закладывая готовые карты
в каждый второй ряд,
потребуется 59,6 м 2 базальтопластиковой
сетки.

Стоимость работ по укладке сетки
для армирования 50 рублей/м 2 .

Стоимость армирования кладки на
один квадратный метр:
((145 рублей/м 2 + 50 рублей/м 2 ) х 59,6 м 2 ) / 215 м 2 = 54 рубля/м 2

Стоимость работ по
кладке
1 м 2 внешней стены.

Стоимость кладки — 2 500 руб/м 3
Стоимость кладки 1 м 2
2 500 руб/м 3 ×0,375 м = 938 руб/м 2

Стоимость кладки — 2 500 руб/м 3
Стоимость кладки 1 м 2
2 500 руб/м 3 ×0,3 м = 750 руб/м 2

Дополнительные расходы
на фундаментные работы,
вызванные тем, что толщина
внешней стены из
газосиликатного блока на 105 мм больше

Разница в толщине внешней стены
0,105 метра.
Соответственно на эту же величину
увеличивается толщина стены ленточного
фундамента.
Высота стены фундамента с учётом цоколя,
возвышающегося над землёй — 1,9 метра.
Периметр фундамента под внешние
стены 42,00 пог.
Дополнительное кол-во м 3 бетона
0,105×1,9×42 = 8,4 м 3
Стоимость бетона В22,5 — 4 200 руб/м 3
Стоимость фундам. работ — 5 000 руб/м 3
Дополнительные расходы на фундамент
8,4 х (4 200 + 5 000) = 84 640 рублей

Стоимость проекта дома

Базовая стоимость проекта- 40 000 рублей.

Итого:

площадь внешних стен за вычетом
оконных и дверных проёмов — 189 м 2
затраты на материалы стен и работы
189 х (1 200,00 + 150 + 64,50+
+ 262 + 938) = 494 141 рублей
доп. затраты на фундамент — 84 640 рублей
затраты на проект дома — 40 000 рублей

494 141 + 84 640 + 40 000 =
618 781 рублей

площадь внешних стен за вычетом
оконных и дверных проёмов — 189 м 2
затраты на материалы стен и работы
189 х (1 625 + 240 + 32,00 + 25+
+ 33 + 54 + 750) = 561 451 рублей

итого 561 451 рублей

Итого, выбор в пользу керамических блоков Керакам Kaiman 30 снизит расходы на строительство на 57 330 рублей!

При этом Керакам Kaiman имеет преимущества:

1. Термическое сопротивление стены будет заметно выше.
2. Прочность в 2 раза выше прочности газосиликатных блоков D500;
3. Керамика — это абсолютно экологически чистый материал;
4. При строительстве из керамики нет необходимости выдерживать технологическую паузу в 12 месяцев для установления нормативного процента влажности, перед тем как приступать к отделке стен.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector