Intekoufa.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы определения морозостойкости кирпича

Способы определения морозостойкости кирпича

yandex

  • Санкт-Петербург
  • Смоленск
  • Великий Новгород
  • Брянск
  • Псков
  • Орёл
  • Великие Луки
  • Невель
  • Тверь
  • Истра
  • Калуга
  • Тула
  • Владимир
  • Наро-Фоминск
  • Подольск
  • Можайск
  • Серпухов

Время работы: пн-пт с 9:00 до 17:00 сб-вс с 10:00 до 15:00

  • Блоки
  • Перегородки
  • Кирпич
  • Теплая керамика

Морозостойкость строительных материалов – это возможность материала сохранить свою структуру и качества во время непрерывного изменения воздействующих на материал температур. Таким образом, морозостойкость является определяющим физическим свойством строительных материалов, важность которого трудно переоценить.

Пористость материалов.

По ходу эксплуатации, строительные материалы подвергаются процессу старения, а также имеют свойство разрушаться. Тут имеет важное значение степень пористости материалов, а основная природа их разрушения связана с попаданием воды в поры, которые в свою очередь расширяются при заморозках, от чего увеличивается их объем. В то время как материал оттаивает, его объем постепенно становится меньше.

Когда материал находится в непрерывном процессе оттаивания-замерзания для него это равносильно многоразовой нагрузке, приводящей к износу и разрушению материала. Наиболее важным качеством, является морозостойкость строительных материалов таких как:

  • Бетон;
  • Керамика;
  • Минеральные ваты;
  • Различные виды кирпича.

По ходу разрушения, материал видоизменяется, также изменяется его прочность и масса. Исследовав эти черты, мы можем сделать вывод о степени морозостойкости того, или иного материала. Чтобы проанализировать свойства строительных материалов на прочность к повреждениям и на способность сохранения массы, нам следует отобрать минимум 5 образцов. На испытание прочности выбирается около 20 образцов, затем 10 из которых берутся в качестве контрольных. После чего контрольные образцы помещаются в водную ванную с гидравлическим затвором.

Марки и циклы, измеряющие степень морозостойкости.

Морозостойкость строительных материалов

Морозостойкость строительных материалов оценивается количеством перенесенных циклов и соответствующей маркой. Для определения марки, материалы испытывают циклами поочередного замораживания и оттаивания. Материал должен выдержать нагрузку без уменьшения прочности на сжатие, от 15 % и выше, после проведенных испытаний образцы должны оставаться без заметных повреждений, а также потеря массы образца не должна превышать 5%.

Выбор марки по морозостойкости определяется с учетом типа конструкции, условиями эксплуатации и внешними климатическими условиями. В основном виды легкого бетона и кирпича имеют 15, 25 и 35 марку. Виды тяжелых бетонов имеют марку 50,100,200, а самый прочный гидротехнический бетон, обозначается 500 маркой.

Испытание морозостойкости.

Для анализа степени морозостойкости проводятся определенные испытания в специализированных лабораториях. Сначала образцы насыщают водой, затем замораживают в специальных морозильных камерах с температурой от -15 до -20 С, для того, чтоб вода успела замерзнуть в тончайших порах. После чего замороженные образцы помещаются, для оттаивания, в водяные ванные с температурой от 15 до 20 С. Таким образом поддерживается постоянное состояние насыщения образцов водой. Затем повторяется аналогичный цикл испытания материала. Так же в последнее время морозостойкость испытывается импульсным ультразвуковым методом.

Влияние структуры пор на морозостойкость кирпича

Строительный кирпич, как и подавляющее большинство других строительных материалов, имеет пористое строение количества и характера пор в материале зависят его физико-технические характеристики, в том числе морозостойкость.

Известно, что вода при переходе в лед увеличивается в объеме на 9%. Развивающееся при этом в материале давление, как установлено рядом исследований в зависимости от характера пор достигает 2 800 кг/см2. В системе капилляров, где возникающий лед может вытеснить избыточную влагу в свободные от не поры, такие большие напряжения исключаются. Если же свободных от воды объемов мало, то в капиллярах возможно давление, превышающее предел прочности материала и приводящее к его разрушению при замораживании.

Кирпич или другое подпетое изделие будет устойчивым к действию мороза только в том случае, когда строение его капилляров либо соглем исключает снижение температуры замерзания (объясняют действием твердой поверхности, переводящей свободную воду в связанное состояние. Степень переохлаждения тем больше, чем меньше диаметр капилляра. В исследованиях П. П. Будникова и Г. С. Блоха снижение температуры замерзания воды объясняется возникновением в капиллярах при льдообразовании давления, значительно превышающего атмосферное.

Читайте так же:
Размеры кирпича для внутренних перегородок

Крупные поры при погружении кирпича в воду быстро и нацело заполняются водой. Однако при извлечении кирпича вода вытекает из наиболее крупных пор вследствие малых капиллярных сил, а в менее крупных удерживается лишь частично. Такие поры, создающие свободный объем, в который может вытесняться вода из пор, где образуется лед, следует рассматривать как резервные. Они оказывают наиболее благоприятное влияние на морозостойкость материала.

Поры меньшего размера, чем резервные, успевают заполниться водой в процессе водонасьпцения и прочно удерживают ее при извлечении образца из воды. Вода в них замерзает при температуре испытания (—15—20°). Эти поры являются для кирпича опасными.

Таким образом, все поры, имеющиеся в кирпиче, по их влиянию на морозостойкость могут быть подразделены на: опасные, которые вода заполняет, удерживается в них и замерзает:

безопасные, которые вода не заполняет, а также те, которые вода заполняет, но не замерзает в них;

резервные, которые вода при насыщении заполняет, но не удерживается в них.

Разумеется, что эрозостойкость материала зависит от того, сколько в нем содержится тех или иных пор, иначе говоря, от соотношения объемов пор различных размеров.

В общем виде требование к структуре морозостойкого кирпича может быть сформулировано так: объем резервных пор должен быть достаточным, чтобы, компенсировать прирост объема замерзающей воды в опасных порах.

Методика определения объемов пор но их размерам, использованная в дайной работе, основана на вдавливании ртути в поры под разным давлением. Схема прибора, предназначенного для определении размеров пор в интервале диаметров 800—15 тк, показана па рис. 1. Основной частью поромера малых давлений является стеклянный дилатометр, состоящий из горизонтального капилляра 1 и головки 2.

Порядок проведения опыта следующий. Высушенные до постоянного веса образцы 4 закладывают в головку дилатометра и закрывают ее шлиф-пробкой 3. После этого из системы с помощью вакуумнасоса откачивают воздух при открытых кранах 5 н 6. По достижении вакуума, характеризуемого остаточным давлением около 10-2 мм рт. ст. и контролируемого манометром Мак-Леода,

Таким образом, морозостойкость пористых тел зависит от пористо-капилинной структуры, точнее от количественного соотношения пор, свободных от воды а целиком насыщенных водой, в / которых при отрицательных температуры образуется лед. Объем свободных- пир, которые в дальнейшем будем называть резервными, должен быть достаточным. чтобы компенсировать прирост объема замерзающей воды.

Это положение легло в основу проведенных авторами работ по повышению морозостойкости кирпича. В результате этих работ были предложены мероприятия, вполне оправдавшие себя. Вместе с тем некоторые вопросы оставались невыясненными. В частности, не была ясна причина неморозостойкостн кирпича с механической прочностью, что имеет место, и неожиданно хорошие показатели морозостойкости у кирпича. Не было найдено объяснения пониженной устойчивости к действию мороза кирпича полусухого прессования по сравнению с изделиями пластического формования.

Для решения этих вопросов возникла необходимость количественно охарактеризовать структуру пор н выяснить ее влияние на морозостойкость изделий.

В зависимости от размеров пор, возникновение в них льда при замерзании воды происходит при различных температурах. Заполнение мелких пор холодной водой идет медленно. Поэтому при погружении кирпича в воду на 48 час., как это обычно делают при испытаниях на морозостойкость, водопоглощение его редко превышает 90% от водопоглощения в кипящей воде, а чаще всего не достигает этой цифры. Чем меньше коэффициент насыщения (отношение водопоглощения в холодной воде к водопоглощению в кипящей воде), тем больше объем мелких пор, которые не заполнишь водой. Если допустить, что в эти г Дные поры может вытесняться нз- чная вода из смежных пор в них воды, то кирпич с мснь- П1М коэффициентом насыщения всегда может быть более морозостоек. Между К как показали работы ряда, такая зависимость не всегда выполняется. Это явилось причиной исключения из ГОСТа допускавшейся оценки морозостойкости продукции по коэффициенту насыщения (коэффициент морозостойкости).

Читайте так же:
Характеристики кирпича одинарного полнотелого керамического кирпича

Изложенное даст основание считать это мелкие поры, незаполняемые при насыщении кирпича водой, нельзя рассматривать как резервные. Вместе с тем, такие поры, поскольку они не содержат воды, можно относить к категории безопасных.

В кирпиче имеются и такие поры, которые хотя и заполняются водой, но также являются безопасными потому, что температура замерзания воды в них лежит значительно ниже нуля. Если ориентироваться на температуры, принятые при стандартных испытаниях кирпича на морозостойкость, то к таким безопасным порам надо отнести те, в которых вода замерзает при температуре ниже —15—20°.

Далее, при работающем вакуумнасосе через кран 5 при закрытом кране припускают воздух и в этой части системы, отключенной от собственно поромера (дилатометра), устанавливается заданное давление, контролируемое чашечным манометром. После этого при открытии крана Б в дилатометр сообщают то же давление.

Ртуть, заполняющая капилляр дилатометра, уходя в поры образца, изменяет свое положение сдвигом столба вправо (в сторону головки). Это фиксируется оптическим прибором. Зная сечение капилляра, определяют объем ушедшей в поры ртути. Благодаря положению капилляра давление ртути во время опыта остается неизменным.

Последовательное увеличение давления в паромере, вплоть до атмосферного, сопровождается соответствующими отсчетами изменения положения ртути. Порядок исследований аналогичен изложенному:

а) постоянства сечения капилляра на всем оно протяжении;

б) постоянства температуры опыта,

в) точности отсчета приложенного давления,

г) точности отсчета изменения положении ртути в капилляре.

Поры размером 0,02—10 мк исследовании на поромере высокого давлении, который используется главным образом в сорбционной технике. Воспроизводимость результатов на нем определено ошибкой опыта в 2%. Количественное соотношение объемов резервные п опасных пор, которое мы называем структурной характеристикой материала. определяется исходя из распределения объемов пор по их размерам опасных и резервных пор устанавливаются по количеству льда, которое образуется в насыщенном водою образце при его замораживании. Количество льда определяем методом температурного скачка.

В основе этого метода лежит зависимость между скоростью изменения при таянии льда и его массой. Определения производят следующим обралом Навеску кирпича насыщают водой при кипячении после чего ее опускают в стеклянный дилатометр, имеющнй форму колбы и заполненный тулуолом лат см дилатометр с тулуолом и образцом помещают в морозильный известных количеств воды (рис. 3), находят массу образовавшегося льда. В данном случае масса льда оказалась равной 5 г.



Объектом изучения в данной работе были обыкновенный глиняный кирпич— массовая продукция заводов, расположенных в разных районах страны. Исследовался также силикатный кирпич некоторых заводов.

Границы резервных и опасных пор были определены путем сопоставления результатов прямых испытаний на морозостойкость со структурными кривыми и величиной льдообразования Установлено, что поры диаметром более 200 мк являются резервными. Поры, менее 200 лис, — опасны. Их нижняя граница несколько изменяется в зависимости от вида кирпича и степени обжига. Так, опасными порами для глиняного кирпича являются поры в интервале от 200 до 1—0,1 лис. При этом для кирпича полусухого прессования нижняя граница в подавляющем большинстве случаев составляет 0,1—0,2 лис, а у кирпичей пластического формования она близка к 1 мк. У силикатного кирпича вследствие особенностей его структуры нижняя граница опасных пор смещается в сторону наиболее мелких и измеряется сотыми долями микрона.

Рассмотрим несколько интегральных кривых На рис 4 показаны кривые для кирпича плоского и пластического формования.

Подвергнутый исследованию кирпич пластического формования — морозостоек, он выдержал 15 циклов попеременного замораживания оттаивания без следов разрушения. Кирпич полусухого формования разрушился при втором цикле. Характер кривых различен. Кирпич пластического формования (морозостойкий) имеет большое количество крупных резервных пор. Границы опасных пор в нем определяются порами диаметром 0,7 мк (вертикальная пунктирная линия на кривой).

Читайте так же:
Сколько кирпича 1м2 облицовки

Для нахождения границ опасных пор. т. е. пор, в которых замерзает вода, было произведено определение массы льда, образовавшегося в насыщенных водою образцах различных видов кирпича Масса замерзшей воды численно равна объему опасных пор. Зная этот объем, мы откладываем его на интегральней кривой правее 200 мк. При этом на кривой получаем точку, абсцисса которой дает нижнюю границу опасных пор

Найденная величина соотношения у морозостойкого материала согласуется с теоретическими примерами.

При анализе влияния меха прочности на морозостойкость было установлено, что связи между этими нет. Она наблюдается резкого различия:



Кирпич полусухого прессовании имеет значительно меньшее количество крупных пор, а интервал опасных пор простирается у него до 1 мк.

На рис. 5 показаны интегральные структурные кривые кирпича пластического формования различной степени большое количество резервных пор, граница опасных пор лежит в области 0,7 мк. Неморозостойкий недожженный кирпич имеет меньшее количество резервных пор, а интервал опасных пор -ограничивается диаметром 0,2 ж/cJ С помощью интегральных кривых можно оценивать количественное соотношение резервных и опасных пор, которое является структурной характеристикой материала.

Морозостойкость кирпича: зависимость от формы, химического состава

Практически на всей территории нашей страны наблюдаются серьезные температурные колебания. В этой связи морозостойкость кирпича по ГОСТ должна быть довольно высокой. В противном случае он начнет быстро терять свои качества.

Любой материал для наружных работ должен обладать повышенными эксплуатационными характеристиками

Любой материал для наружных работ должен обладать повышенными эксплуатационными характеристиками

Почему она так важна

Морозостойкостью называют способность материала выдерживать чередующиеся замораживание и оттаивание без каких-либо последствий. Измеряется она в количестве циклов, которые может выдержать материал. Если наблюдается слабая морозостойкость, кирпич начинает разрушаться, что приводит к фатальным последствиям.

Главная причина разрушений заключается в расширении воды, которой заполнены поры материала, при оттаивании. Как известно, вода имеет больший объем в замершем виде, нежели в жидком. Поэтому и происходит губительное разрушение структуры.

Как гласит инструкция, рядовой полнотелый кирпич должен обладать морозостойкостью не менее 15 циклов. Что касается полнотелых облицовочных кирпичей, применяемых для наружных работ, то для них этот показатель должен быть не менее 35.

Совет: данный показатель применим к средней полосе России, где умеренно-континентальный климат. Для северных регионов, вышеупомянутые цифры нужно увеличить на 30-50%.

Согласно ГОСТ 379-78, снижение прочности кирпича во время тестирования его морозостойкости должны быть не более 25%. Примерно таким показателем характеризуются большее количество образцов. Разумеется, есть и более совершенные аналоги (снижение может быть менее 5%), но их цена значительно выше.

На современном рынке есть такие марки кирпича по морозостойкости, которые могут выдержать более 200 циклов замораживания и оттаивания. Такой материал имеет очень длительный эксплуатационный период. Применяется он, как правило, для создания фундамента, ведь именно эта часть здания подвергается наиболее сильной нагрузке.

От чего она зависит

Давайте теперь разберемся от чего зависит морозостойкость керамического кирпича.

Форма

По словам экспертов, главный фактор, влияющий на морозостойкость – это его форма. Речь идет о наличии/отсутствие пор и их относительном объеме. Это вполне логично: чем больше пустот в кирпиче, тем большее пространство может заполнить застывшая вода и, как следствие нанести больший ущерб.

На данном фото вы можете увидеть кирпич, который испытал критическое количество температурных циклов, в итоге начал деформироваться

На данном фото вы можете увидеть кирпич, который испытал критическое количество температурных циклов, в итоге начал деформироваться

В данном аспекте имеет преимущество двойной силикатный кирпич М 150. Во-первых, в силикатном полнотелом кирпиче нет пор, а во-вторых он состоит из водоотталкивающих веществ.

Читайте так же:
Сколько нужно кирпичей для печи кузнецова

Химический состав

Другой не менее важный фактор – это состав материала (химический состав, плотность и т.д.).

Ниже мы представим вашему вниманию список важнейших составляющих, которые влияют на морозостойкость.

  • Исходное сырье. К примеру, если для создания кирпича были использованы известково-кремнеземистые породы, то коэффициент его морозостойкости будет порядка 0,87-0,93. Также следует обратить внимание и на удельное содержание кварца. Чем его будет больше, тем выше будет морозостойкость.
  • Некоторые производители, которые обладают современным оборудованием, добавляют в кирпич особенные дисперсные фракции. Они создают в структуре материала микроскопические капилляры, которые препятствуют застыванию воды.
  • Силикаты кальция – благодаря ним строительный кирпич не подвергается температурному расширению. Они бывают высоко- и низко основными. В первом случае морозостойкость будет иметь показатель на 25-30% выше.

Совет: наилучшие показатели у кирпича, в котором использовалась силикатная смесь.

  • От состава глины и песка также зависит данный показатель. Так, использование каолинитовой глины может привести к его снижению, в свое время специальные гидросиликаты могут в несколько раз восполнить это.

Рекомендации

В связи с возникшим спросом, многие производители стараются производить материалы, которые отвечают всем требованиям. Однако можно констатировать, что морозостойкость силикатного кирпича значительно выше, чем его керамического собрата.

Поэтому он гораздо чаще используется в северных регионах, где этот показатель является ключевым. Если вы живете в теплом регионе, в котором среднегодовая амплитуда менее 40 градусов, то использовать кирпич с высокой морозостойкостью не обязательно. Можно воспользоваться образцами с показателем F15-F35.

Сравнение

Теперь проанализируем некоторые разновидности кирпича. В частности, сравним ключевые характеристики (морозостойкость и теплопроводность) этих материалов с их средней ценой.

ВидМарка по морозостойкости кирпичаТеплопроводностьСредняя стоимость, р/шт.
М50 КерамикаF250,166-6,5
М50 СиликатF350,187,5-8
М75 КерамикаF400,28-9
М75 СиликатF500,359-10,5
М100 КерамикаF600,4512-14
М150 СиликатF650,615-16

Примечание: за основу были взяты наиболее популярные образцы без каких-либо специальных добавок. Цена рассчитывалась как среднее арифметическое между самым дорогим и самым дешевым предложением на рынке.

Облицовочный кирпич обладает более скромными техническими характеристиками, зато его можно при желании демонтировать

Облицовочный кирпич обладает более скромными техническими характеристиками, зато его можно при желании демонтировать

Несложно заметить, как сильно розниться цена при увеличении вышеописанных характеристик. Если вы хотите своими руками произвести кирпичную кладку, то лучше используйте полнотелые керамические образцы, так как их легче резать.

Заключение

Надеемся, что смогли во всех деталях раскрыть такой параметр, как морозоусточивость строительного материала. В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Морозостойкий бетон: классификация, состав, свойства

Одна из важных характеристик бетона, используемого для строительства в регионах с холодными зимами и температурными перепадами, – морозостойкость. Она определяет свойство материала выдерживать многократное замораживание и оттаивание.

Показателем морозостойкости бетона является марка, равная количеству циклов замораживания и оттаивания до возникновения видимых признаков разрушения, уменьшения прочности более чем на 5%, изменения физических характеристик.

Марка обозначается буквой F и числом, равным максимальному количеству циклов до состояния, обозначенного в нормативе.

Эта величина важна для смесей, применяемых при сооружении фундаментов, наружных стен, объектов гидротехнического назначения, опор мостов и других строительных конструкций ответственного назначения.

Классификация морозостойкости бетонов

Виды бетонных смесей по морозоустойчивости регламентируются ГОСТом 25192-2012. Помимо показателя F, морозостойкость могут определять следующие характеристики:

  • F1 – марка, установленная при исследовании материала, находящегося в водонасыщенном состоянии;
  • F2 – марка бетонных смесей, производимых для устройства покрытий дорог и аэродромов или эксплуатации в контакте с минерализованными водами, образцы для исследований насыщают 5% раствором NaCl.

Требования к морозостойкости бетона зависят от запланированной области его применения:

  • ДоF50. Это низкий уровень устойчивости к знакопеременным температурам. Такая смесь применяется для внутренних работ, в подготовительных строительных мероприятиях.
  • F50-F150. Этот материал со средним уровнем морозоустойчивости широко применяется в рядовом строительстве объектов, расположенных в регионах с умеренным, устойчивым климатом.
  • F150-F300. Такие бетоны востребованы при строительстве в регионах с холодным климатом.
  • ВышеF300. Смеси с высокой стойкостью к температурным перепадам применяются для сооружения объектов специального назначения, а также сооружений, эксплуатируемых в тяжелых климатических условиях.
Читайте так же:
Что такое кирпич облицовочный пустотелый

Прочность и показатель морозостойкости всех видов бетона находятся в прямой зависимости: чем выше прочность, тем больше морозоустойчивость материала.

Таблица зависимости класса прочности и морозостойкости бетона

От каких факторов зависит морозостойкость бетона?

Основной параметр, влияющий на способность материала противостоять замораживанию и оттаиванию, – количество пор. Чем оно выше, тем большее количество воды проникает в бетонный элемент.

При отрицательных температурах вода меняет агрегатное состояние, превращаясь в лед с увеличением объема примерно на 10%. Поэтому с каждым циклом бетонная конструкция постепенно деформируется, утрачивая прочностные характеристики.

Вода, проникающая вглубь конструкции, разрушает не только сам бетон, но и вызывает коррозию стальной арматуры.

Способы определения морозостойкости бетона

Способы определения морозоустойчивости регламентирует ГОСТ 10060-2012. Методика актуальна при разработке новых рецептур и передовых технологий, контроле качества при купле-продаже. Для испытаний изготавливают образец кубовидной формы со сторонами 100-200 мм. Циклы замораживания и оттаивания осуществляются в диапазоне -18…+18°C. В соответствии с ГОСТом существует несколько вариантов вычисления этого показателя:

  • базовый многократный;
  • ускоренный многократный;
  • ускоренный однократный.

Если результаты ускоренных испытаний отличаются от результатов базовых, то эталонными считаются показатели базовых исследований.

Основные этапы базовых испытаний водонасыщенных образцов, проводимых в соответствии с ГОСТом:

  • Бетонные кубики насыщают водой и обтирают влажной тканью. Испытывают на сжатие.
  • Исследовательский материал помещают в морозильную камеру для замораживания. Выдерживают заданный режим.
  • Оттаивание производят в специальных ваннах.
  • После оттаивания с образцов щеткой удаляют отслаивающийся материал.
  • Кубики обтирают ветошью, определяют массу и исследуют на сжатие.
  • Обрабатывают результаты испытаний.

Пониженную морозостойкость материала можно определить и подручными методами. Конечно, результаты таких исследований не могут использоваться при составлении проектной документации.

  • Визуальный осмотр. О низкой устойчивости к знакопеременным температурам свидетельствует наличие трещин, бурых пятен, расслаивания, шелушения.
  • Определение водопоглощения. Если этот показатель равен 5-6%, то устойчивость к низким температурам будет пониженной.
  • Высушивание влагонасыщенного образца на солнце. Его растрескивание сигнализирует о пониженной морозостойкости.

Способы повышения морозостойкости

Повысить морозоустойчивость бетона можно несколькими способами:

  • Изолировать бетонный элемент от неблагоприятного внешнего воздействия с помощью обмазочных и окрасочных материалов, пропиток.
  • Использовать цемент более высоких марок. Чем прочнее вяжущее, тем выше морозоустойчивость готового бетонного элемента.
  • Получить плотную структуру материала путем тщательного уплотнения различными способами и создания благоприятных условий твердения бетонной смеси
  • Изготовить морозостойкий бетон можно путем введения в его состав специальных присадок.

Подробнее рассмотрим виды и принцип действия добавок:

  • Поверхностно-активные вещества. Обеспечивают образование плотной структуры.
  • Присадки, способствующие появлению шаровидных пор. Вода, проникшая в бетонную конструкцию, при замерзании выталкивается в эти пустоты, поэтому структура материала при изменении агрегатного состояния воды не повреждается.
  • Суперпластификаторы. Увеличивают плотность, повышают водонепроницаемость, а следовательно, показатели морозостойкости.
  • Добавки, улучшающие водонепроницаемость бетонного элемента и его внутреннюю структуру. К ним относятся «Дегидрол», «Пенетрон Адмикс», «Кристалл».

Присадки для бетона с глиноземистым цементом обычно не применяются, поскольку они могут не улучшить, а снизить характеристики материала.

Андрей Васильев

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector