Intekoufa.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплотехнические характеристики огнеупорных и теплоизоляционных материалов

Теплотехнические характеристики огнеупорных и теплоизоляционных материалов

Огнеупорность определяется как температура Т огн, при которой происходит деформация стандартного образца в форме усеченной пирамиды при отсутствии механического и физико-химического воздействия. Огнеупорные изделия подразделяют на три группы: средней огнеупорности (огнеупорные) – Т огн до 1770 °С; высокой огнеупорности (высокоогнеупорные) Т огн от 1770 °С до 2000 °С, высшей огнеупорности – Т огн – выше 2000 °С. Предельная рабочая температура службы огнеупоров в условиях эксплуатации Tmax значительно ниже, чем Т огн.

В таблице 1 приведены свойства наиболее широко используемых печных огнеупоров. Все огнеупоры характеризуются такими важными эксплуатационными показателями, как термостойкость, шлакоустойчивость, строительная прочность, изменение объема при нагреве, которые определяют их применение для строительства элементов печей.
Термостойкостью называют способность огнеупоров выдерживать циклическое изменение температур при нагреве и охлаждении, так называемые теплосмены. Термостойкость характеризуют числом теплосмен до потери 20% первоначальной массы огнеупора в результате образования трещин и скалывания.
Шлакоустойчивость характеризует способность огнеупора выдерживать воздействие жидкого шлака и металла, окалины, газов.

Динас содержит более 93% SiO2 и относится к кремнеземистым, кислым огнеупорам. Обладает высокой строительной прочностью, высокой температурой начала деформации под нагрузкой и соответственно рабочей температурой службы 1650–1700 °С. Устойчив к воздействию кислых расплавов и газовых сред, но не выдерживает контакта с основными расплавами металлов и их оксидов. Термостойкость динаса по стандартной методике не превышает 1-2 водяных теплосмен. Однако, если колебания температуры происходят в области значений выше 300 °С и особенно выше 600 °С, то термостойкость динаса исключительно высока.
Динас широко применяют для изготовления высокотемпературной части насадки доменных воздухонагревателей и регенераторов нагревательных колодцев, которая не охлаждается ниже 600 °С, для кладки распорных сводов.

Таблица 1 – Свойства огнеупоров, наиболее широко используемых в печах

Главные хим. компоненты в % (мас.)

Плотность – r, т/м 3

Коэф. теплопроводности – l, Вт/(м×К) при 100 °С

Уд. теплоемкость – с, кДж/(кг×К) при 100 °С

Шамот относится к алюмосиликатным огнеупорам, содержащим кроме SiO2 до 45% Al2O3. Обладает более высокой термостойкостью (10-20 водяных теплосмен), но низкой шлакоустойчивостью. Наиболее широко применяется в печестроении при температурах до 1350 °С для строительства стен, сводов, не контактирующих с оксидами металлов, для низкотемпературной части регенеративной насадки. Не выдерживает истирающего действия при высоких температурах.

Муллит и корунд относятся к высокоглиноземистым алюмосиликатным огнеупорам. По мере увеличения содержания Al2O3 повышается их рабочая температура службы, прочность и постоянство объема при разогреве. Термостойкость превышает 150 водяных теплосмен. Применяются вместо шамота в условиях более высоких температур: муллит – до 1650 °С, корунд – до 1800 °С. Плавленые корундовые изделия обладают высокой шлакоустойчивостью и выдерживают давление и истирающее действие металла и шихты. Применяются в установках внепечной обработки стали, в монолитных подинах методических нагревательных печей, в качестве насадки шариковых регенераторов.
Периклаз (или магнезит) содержит не менее 85% MgO. Температура начала размягчения под нагрузкой значительно ниже огнеупорности. Максимальная рабочая температура 1700 °С. Термостойкость изделий невысока и составляет 1-2 водяных теплосмены.
Шлакоустойчивость по отношению. к основным расплавам – металлам и шлакам, богатым оксидами металлов и известью, исключительно высока. Поэтому магнезитовые кирпичи используются для кладки элементов печей черной и цветной металлургии, которые контактируют с расплавами металлов и основных шлаков. Магнезитовый порошок используют для заполнения швов при кладке подин плавильных печей.
Периклазохромитовые и хромитопериклазовые огнеупоры содержат в качестве основы MgO и хромит Cr2O3. Свойства этих огнеупоров существенно отличаются от периклазовых и зависят от соотношения хромита и магнезита. Максимальная термостойкость соответствует отношению Cr2O3:MgO = 30:70. Шлакоустойчивость выше при содержании хромита 20 %. В сводах сталеплавильных печей наибольшую стойкость имеют изделия с содержанием хромита 20-30 %. Они изнашиваются из-за образования трещин и сколов, к которым приводят термические напряжения, возникающие при колебании температуры в рабочем пространстве печи.
Смолодоломитовые безобжиговые огнеупоры содержат в качестве основы MgO и СаО, а также углерод в виде смоляной связки в количестве 2-4 %. Они применяются для футеровки конвертеров. Известь СаО взаимодействует с силикатами конвертерного шлака, благодаря чему на поверхности футеровки образуется гарниссаж, препятствующий проникновению шлака в футеровку.
Углеродистые огнеупоры изготавливаются из доступного сырья – графита, кокса – с высокой температурой плавления ³ 3500 °С. Они не смачиваются расплавами и поэтому устойчивы против них, имеют высокую термостойкость, но начинают окисляться в продуктах горения топлива при температуре ³ 600 °С. Поэтому их используют для службы в восстановительной среде: в электрических печах для производства ферросплавов, алюминия, свинца, в лещади доменных печей, в качестве припаса для разливки металлов, для изготовления электродов дуговых плавильных печей.
Карбидкремниевые огнеупоры содержат в качестве главного компонента SiC – карборунд. Они покрыты защитной плёнкой SiO2, поэтому не окисляются как углеродистые. Имеют высокую прочность, износоустойчивость, термостойкость. Устойчивы против нейтральных и кислых расплавов, нестойки против основных. Применяются для изготовления трубок керамических рекуператоров, огнеупорных муфелей.
Неформованные огнеупоры применяют для изготовления монолитных футеровок из огнеупорного бетона и набивных масс. Огнеупорный бетон представляет собой смесь огнеупорного наполнителя (бой огнеупорных изделий) с размером частиц от 0,5 до 70 мм, вяжущего и добавок. В качестве вяжущего используют твердеющие в холодном состоянии огнеупорные цементы (глиноземистый, магнезиальный), жидкое стекло, фосфатные связки на основе ортофосфорной кислоты Н3РО4. Добавки могут регулировать скорость схватывания и твердения, улучшать пластические свойства, уменьшать усадку.
Широко распространены динасовые бетонные блоки и панели для стен нагревательных колодцев, глинистокварцитовые массы для набивной футеровки ковшей. Применяют монолитную футеровку стен и сводов нагревательных печей из жидкого (литого) бетона с креплением её к металлическому каркасу печи с помощью анкерных кирпичей, распределенных по площади стен и свода.
Защитные гарниссажи образуются на рабочей поверхности ограждения плавильных, шахтных и дуговых печей из спекающихся или расплавленных материалов при интенсивном охлаждении стен печи водой или воздухом. В плавильных печах цветной металлургии гарниссаж является эффективным средством защиты, а иногда и замены футеровки.

Читайте так же:
Характеристики кирпича одинарного полнотелого керамического кирпича

ТЕПЛОТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ
Для тепловой изоляции металлургических печей применяются три вида изделий: 1) легковесные пористые огнеупорные кирпичи: шамот-легковес, динас-легковес, диатомитовый и другие; 2) теплоизоляционные засыпки; 3) изделия в виде плит, ваты, войлока, картона, изготовленные на основе керамического волокна в смеси со связующим материалом, так называемые волокнистые огнеупоры. Волокнистые огнеупоры являются относительно новыми теплоизоляционными материалами.

Легковесные огнеупорные кирпичи обладают большой пористостью и поэтому меньшей плотностью и теплопроводностью, чем обычные огнеупорные кирпичи (табл. 2). Марка кирпича в табл. 2 расшифровывается так: Д – динас, Ш – шамот, Л – легковес, числа после тире означают плотность. Чем меньше плотность кирпича, тем лучше его теплоизоляционные свойства, но ниже максимальная рабочая температура.
По сравнению с обычными огнеупорами шамот-легковес и другие легковесы имеют более низкую прочность, шлакоустойчивость и термостойкость. Их можно применять не только для теплоизоляционного слоя футеровки, но и для рабочего слоя, в термических печах. Диатомитовый кирпич применяют только для наружного слоя тепловой изоляции стен и свода нагревательных печей.

Таблица 2 – Свойства легковесных огнеупорных изделий

Группы изделий по теплотехническим характеристикам

В различных странах выпускаются отличающиеся между собой стеновые материалы как по номенклатуре, так и по типоразмерам и маркам. В зарубежной практике известно производство кирпича пазогребневой конструкции для безрастворной кладки, крупноразмерных стеновых керамических элементов, звукоизоляционного кирпича и других стеновых изделий.

Панели и блоки стеновые из кирпича и керамических камней изготовляются трех-, двух- и однослойные длиной на один или два планировочных шага и высотой на 1 и 2 этажа. Толщина панелей для внутренних стен и перегородок от 80 до 280 мм. Однослойные панели изготавливают из керамических камней, двухслойные – из слоя в ½ кирпича и слоя утеплителя, трехслойные – из двух кирпичных наружных слоев толщиной по 65 мм и слоя утеплителя между ними.

Отделочные (облицовочные) керамические материалы применяются для наружной и внутренней облицовки конструкций зданий и сооружений не только с целью декоративно-художественной отделки, но повышения их долговечности.

Материалы для наружной облицовки. Кирпич и камни лицевые укладываются вместе с кладкой стены и одновременно служат конструктивным несущим элементом. Регулируя состав сырья и режимы обжига получают изделия различных цветов: белого, кремового, светло-красного, коричневого. Также изготавливаются изделия с лицевой поверхностью, офактуренной различными способами: ангобированием, глазурованием, двухслойным формованием и проч.

Крупноразмерные облицовочные керамические плитыквадратной или прямоугольной формы длиной от 490 до 1190 мм. Поверхность плит матовая или полированная различных цветов, часто со структурой, напоминающей гранит. По этой причине, а также за высокие физико-механические свойства такие плиты называют керамогранит.

Плитки керамические фасадные и ковры из них применяются для облицовки наружных стен кирпичных зданий, наружных поверхностей железобетонных стеновых панелей, цоколей, подземных переходов и проч. Фасадные плитки выпускают различных цветов и фактуры поверхности размерами от 21х21х4мм до 292х192х9 мм. Плитки могут поставляться с заводов в коврах с наклейкой плиток их лицевой стороной на крафт-бумагу. При отделке поверхностей плиточный ковер втапливается в раствор, а после его затвердевания бумага с лицевой поверхности плиток смывается.

Материалы для внутренней облицовки. Плитки для облицовки стен (кафельная плитка) выпускают различных типоразмеров; чаще других используются плитки размером 150х150 и 200х300 мм. Кроме плиток выпускаются фасонные элементы: уголки, фризы и др. для отделки внешних и внутренних углов. По характеру поверхности плитки бывают плоские рельефно-орнаментированные и фактурные; по виду глазурного покрытия – прозрачные и глухие, блестящие и матовые одноцветные и декорированные многоцветными рисунками.

Читайте так же:
Цвет кирпича с графитом

Плитки для полов (метлахские) благодаря их высокой износостойкости и минимальному водопоглощению применяют для настилки полов в зданиях, к чистоте которых предъявляются высокие требования, где возможно воздействие жиров, химических реагентов, интенсивное движение, а также в случаях, когда материал пола служит декоративным элементом в архитектурном оформлении помещения.

Облицовка керамикой – один из самых экономически эффективных видов отделки фасадов и интерьеров зданий. Первоначальная стоимость такой облицовки выше многих других видов отделки, но с учетом очень высокой долговечности керамики, керамическая облицовка оказывается выгоднее большинства других видов отделки.

Кровельные керамические материалы. Черепица – старейший искусственный кровельный материал, имеет долговечность до 300 лет и является одним из самых эффективных кровельных материалов. Недостатки ее – большой вес и трудоемкость устройства. Черепица требует мощной стропильной системы и обеспечение большого уклона кровли (не менее 30 0 ).

Новый вид керамического кровельного материала, имитирующего кровельные плитки из природного сланца, — ардогрес. Размер плиток 40х40 и 20х40 мм, цвет – темно-серый и коричневый. Материал имеет чрезвычайно низкое водопоглощение (до 0,5%), высокую прочность, морозостойкость и долговечность.

Специальные керамические изделия. Санитарно-техническая керамика – раковины сливные бачки, унитазы и другие аналогичные изделия производятся из фарфора, полуфарфора, фаянса. Поверхность изделий покрывается блестящей глазурью.

Трубы керамические канализационные применяются для устройства безнапорных сетей канализации, транспортирующих промышленные, бытовые, дождевые, агрессивные и неагрессивные воды. Длина труб – 1000-1500 мм, внутренний диаметр – 150-600 мм. Трубы керамические дренажные применяются в мелиоративном строительстве для устройства закрытого дренажа с защитой стыков фильтрующими материалами. Внешняя поверхность покрывается глазурью. Вода в трубы поступает через круглые или щелевидные отверстия в стыках, а также через сами стыки труб.

Кирпич для дымовых труб применяется для кладки дымовых труб и обмуровки промышленных труб при температуре эксплуатации не выше 700 0 С. Клинкерный (дорожный) кирпич отличается высокой прочностью и морозостойкостью и применяется для покрытия дорог и мостовых, обмуровки канализационных коллекторов и облицовки набережных. Марки по прочности на сжатие такого кирпича – 1000, 700 и 400, морозостойкость соответственно – 100-50 циклов, водопоглощение не более 2-6%. Кислотоупорный кирпичи плитки применяются для защиты аппаратов и строительных конструкций, работающих в условиях кислых агрессивных сред.

Огнеупорные материалы получают по керамической технологии из различных сырьевых компонентов. Они делятся на огнеупорные (температура размягчения 1580-1770 0 С), высокоогнеупорные (1770-2000 0 С) и высшей огнеупорности (более 2000 0 С). В зависимости от химико-минерального состава огнеупоры могут быть кремнеземистые (основной компонент SiO2), корундовые (на основе Al2O3), алюмосиликатные (состоят из SiO2 и Al2O3 в разных соотношениях), магнезиальные на основе MgO (периклазовые), хромитовые, графитовые (углеродистые). Наибольшее применение в строительстве имеют кремнеземистые и алюмосиликатные огнеупоры. Для обеспечения высокотемпературной тепловой изоляции выпускают легковесные огнеупоры со средней плотностью от 400 до 1300 кг/м 3 и пористостью соответственно 85-45%.

Вопросы для самоконтроля к главе 5

1. Какие материалы и изделия называют керамическими?

2. На основе каких признаков принято классифицировать керамические изделия?

3. Каковы состав и свойства глин, как основного сырья для производства керамики?

4. Какие добавки и с какой целью вводят в состав керамической массы?

5. Чем обусловлена пластичность глин? Как ее регулируют?

6. Назовите основные этапы производства керамических изделий.

7. Какие способы формования изделий Вы знаете?

8. При какой температуре и почему проводят сушку и обжиг керамических изделий?

9. Какие процессы происходят при обжиге глин? Что такое «недожог» и «пережог»?

10. Назовите свойства и виды стеновых керамических изделий.

11. Перечислите и кратко охарактеризуйте основные виды керамических изделий.

теплотехнические показатели строительных материалов

Расчетные теплотехнические показатели строительных материалов и изделий

Тепловая защита здания, какую толщину утеплителя брать

Тепловая защита стены здания. Какую толщину утеплителя брать?

Тепловую защиту здания будем обеспечивать согласно СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (с Изменением N 1) проектирование тепловой защиты строящихся или реконструируемых жилых, общественных, производственных, сельскохозяйственных и складских зданий общей площадью более 50 м2, в которых необходимо поддерживать определенный температурно-влажностный режим.

Термическое сопротивление стены определяется как набор из сопротивлений всех слоев конструкции. Толщина утеплителя (теплоизоляции) зависит от материала, из которого выполнена стена. Для кирпичных и бетонных стен требуется больше теплоизоляции, для деревянных и пеноблочных меньше.

Чем "тоньше" несущие конструкции, тем больше должна быть толщина утеплителя.

нормируемое значение приведенного сопротивления теплопередаче

Тепловая защита здания:

Это совокупность теплофизических и теплоэнергетических характеристик элементов здания, обеспечивающие безопасную эксплуатацию здания с позиции теплового режима помещений и способствующие экономному расходованию энергетических ресурсов. К тепловой защите здания относятся теплофизические свойства и характеристики наружных и внутренних ограждающих конструкций здания, удельная теплозащитная характеристика здания, защита от переувлажнения и воздухопроницаемость ограждающих конструкций.

Теплый период года (здесь): Период года, характеризующийся средней суточной температурой воздуха выше 8°С или 10°С в зависимости от вида здания.

Читайте так же:
Черновой кирпич что это такое

Точка росы: Температура, при которой начинается образование конденсата в воздухе с определенной температурой и относительной влажностью.

Продолжительность отопительного периода: Расчетный период времени работы системы отопления здания, представляющий собой среднее статистическое число суток в году, когда средняя суточная температура наружного воздуха устойчиво равна и ниже 8°С или 10°С в зависимости от вида здания.

Требуемое сопротивление стен

Выясним, какое нормируемое значение приведенного сопротивления

теплопередаче необходимо обеспечить по нормам

Находим Градусо-сутки отопительного периода, °С·сут/год, определяют по формуле

Например для Москвы ГСОП = (20-(-2,2)*205 = 4551 °С·сут/год

где Тот и Zот — средняя температура наружного воздуха, °С, и продолжительность, сут/год, отопительного периода, принимаемые по СП 131.13330.2012 для жилых и общественных зданий для периода со среднесуточной температурой наружного воздуха не более 8 °С, а при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых не более 10 °С;

Тв — расчетная температура внутреннего воздуха здания, °С, принимаемая при расчете ограждающих конструкций групп зданий указанных в таблице 3: по поз.1 — по минимальным значениям оптимальной температуры соответствующих зданий по ГОСТ 30494 (в интервале 20-22 °С);

по поз.2 — согласно классификации помещений и минимальных значений оптимальной температуры по ГОСТ 30494 (в интервале 16-21 °С); по поз.3 — по нормам проектирования соответствующих зданий.

Полученные данные сводим в таблицу

Согласно примечания таблицы 3 СП50, значения для велечин ГСОП,

отличающихся от табличных, следует определять по формуле

Например для Москвы R0 тр = 0,00035 * 4551 * 1,4 = 2,23 м2С/Вт

Термическое сопротивление слоя многослойной ограждающей конструкции, а также однородной (однослойной) ограждающей конструкции следует определять по формуле:

b — толщина слоя, м.

λ — расчетный коэффициент теплопроводности материала слоя, Вт./ м*С

1) Плитная теплоизоляция, минераловатная плита Венти Баттс, плотность 85-110 кг/м3, масса 9 кг/м2, λ25= 0,0037 Вт/(м*С).

толщина слоя b = 0,1 м.

Rслоя = b/λ = 0,1/0,037 = 2,7 (м2*С)/Вт

2,23 < 2,7 Условие выполняется

Расчетные теплотехнические показатели строительных материалов и изделий.

Влажностный режим помещений зданий находим по таблице 1 СП 50:

1) Режим — Нормальный

2) Влажность внутреннего воздуха свыше 50 до 60%, при температуре свыше 12 до 24 градусов

Условия эксплуатации ограждающих конструкций А или Б

1) Режим — Нормальный

2) Условия эксплуатации — Б

Согласно приложения Т, таблица Т1 находим расчетные теплотехнические показатели строительных материалов и изделий:

Например, теплоизоляционные материалы при условии эксплуатации Б (согласно СП50):

1) Кирпичная кладка из сплошного кирпича из:

а) глиняного обыкновенного на цементно-песчаном растворе плотностью 1800 кг/м3 — 0,81 Вт/м*С

б) керамического пустотного плотностью 1200 кг/м3 на цементно-песчаном растворе — 0,52 Вт/м*С

2) Дерево и изделия из него:

а) сосна и ель поперек волокон плотностью 500 кг/м3 — 0,18 Вт/м*С

б) Сосна и ель вдоль волокон плотностью 500 кг/м3 — 0,35 Вт/м*С

а) железобетон плотностью 2500 кг/м3 — 2,04 Вт/м*С

б) раствор цементно-песчаный плотностью 1800 кг/м3 — 0,93 Вт/м*С

в) бетон на гравии или щебне из природного камня плотностью 2400 кг/м3 — 1,86 Вт/м*С

Сравнительный анализ теплотехнических свойств домов из разных материалов

анализ теплотехнических характеристик стен дома

Постоянный рост затрат на отопление жилья заставляет задуматься о выборе технологии строительства с максимальными показателями по энергоэффективности. Строительство энергосберегающих домов является сегодня не прихотью, а острой необходимостью, закрепленной законодательно в федеральном законе РФ за № 261-ФЗ «Об энергосбережении».

Эффективность стеновой конструкции жилого дома напрямую зависит от показателей по теплопотерям, которые происходят через разные элементы ограждающих конструкций дома. Основное тепло теряется именно через наружные стены. Вот почему их теплопроводность серьезно влияет на микроклимат внутри помещений. Нет смысла говорить об эффективных стеновых конструкциях без учета показателей теплопроводности. Стена может быть толстая, прочная и дорогая, но вовсе не энергоэффективная.

Возникает закономерный вопрос, какой дом теплее, а точнее, какой из популярных в нашей стране материалов лучше сохраняет тепло? Простое сравнение коэффициентов теплопередачи в данном случае является не совсем корректным. Прежде всего, следует оценивать способность сохранять тепло внешней ограждающей конструкцией, как единой системы.

Рассмотрим загородные дома, построенные по различным технологиям, с различными типами стен, и посмотрим какой дом имеет наименьшие потери тепла.

В малоэтажном жилищном строительстве наибольшее распространение получили следующие виды домов:

  • каменные
  • деревянные
  • каркасные

Каждый из названных вариантов имеет несколько подвидов, параметры которых существенно различаются. Для получения объективного ответа на вопрос, какой дом самый теплый, сравнивать будем только лучшие образцы по одному из числа представленных в списке.

Характеристики теплопроводности
популярных строительных материалов

Дома из кирпича

Кирпичный дом представляет собой надежное, долговечное жилище и пользуется популярностью у наших сограждан. Его прочность и стойкость к неблагоприятным факторам среды обуславливается большой плотностью материала.

Кирпичные стены неплохо сохраняют тепло, но все же требуют постоянного отопления помещений. В противном случае, зимой кирпич впитывает влагу и под весом кладки начинает разрушаться. Если длительное время держать кирпичный дом без отопления, его придется прогревать до нормальной температуры около трех дней.

Читайте так же:
Расчет кирпича для помпейской печи

фото дома из кирпича

Минусы кирпичных построек:

  • Высокая теплопередача и потребность в дополнительной теплоизоляции. Без теплоизоляционного слоя толщина кирпичной стены, способной удерживать тепло, должна быть не менее 1,5 м.
  • Невозможность периодического (сезонного) использования здания. Кирпичные стены хорошо впитывают тепло и влагу. В холодный сезон полный прогрев дома займет не менее трех суток, а на полное устранение излишней влаги уйдет не менее месяца.
  • Толстый цементно-песчаный шов, скрепляющий кирпичную кладку, имеет в три раза больший коэффициент теплопроводности по сравнению с кирпичом. Соответственно теплопотери через кладочные швы еще более значительны, чем через сам кирпич.

Технология теплого дома из кирпича требует дополнительного утепления с внешней стороны стены плитами утеплителя.

Дома из дерева

Комфортная атмосфера быстрее создается в доме, построенном из дерева. Этот материал практически не охлаждается и не нагревается, поэтому температура внутри помещения быстро стабилизируется. При достаточной толщине стен такие дома можно не утеплять, поскольку дерево само по себе может служить термоизоляцией.

деревянный дом

Однако, для того, чтобы деревянный дом был теплым, толщина наружных стен из сплошной древесины должна составлять более 40 см, из клееного бруса 35-40 см, а из оцилиндрованного бревна более 50 см. Стоимость строительства такого жилья очень высока. Остается, либо игнорировать современные требования и строить дом, например, из бруса толщиной минимум 20-22 см или из бревен диаметром 24-28 см (при этом понимать, что расходы на отопление будут достаточно высокими, особенно если в доме нет магистрального газа), либо стены деревянного дома все же придется дополнительно утеплять.

Людям, которые на первое место ставят комфорт и целесообразность, лучше подумать об утеплении деревянного дома. Тогда дерево создаст в доме оптимальный микроклимат, а утепление обеспечит экономию на отоплении. По сравнению с кирпичом теплопотери деревянного дома значительно меньше. Но все же, для того, чтобы теплый дом из дерева был еще и экономичным, ему требуется дополнительная теплоизоляция.

Дома из каркаса

По своим характеристикам каркасная технология строительства выглядит намного лучше кирпичного или деревянного дома и не требует дополнительного утепления. Если в зоне климата, где планируется строительство загородного дома, зимой бывают низкие температуры, то каркасная технология является самым идеальным вариантом.

Технология каркасного домостроения подразумевает слой термоизоляции внутри стен, который позволяет оградить помещения от наружного холода. Большим плюсом постройки каркасного дома, в сравнении с деревянным или кирпичным, является высокая энергоэффективность при очень небольшой толщине стен.

Данная технология позволяет возводить абсолютно разные по своему функциональному назначению объекты:

Каркасные дома для сезонного проживания.
Например, каркасно-щитовые, дома из СИП-панелей и прочие «эконом» варианты, используемые, в основном,
как летние дачи.

Теплые каркасные дома для постоянного проживания.
Например, здания на монолитном фундаменте, с утеплением стен не менее 200 мм, с внутренними инженерными коммуникациями.

В каркасно-щитовых домах и домах из СИП-панелей для поддержания тепла требуется постоянно работающий обогреватель, поскольку тепло в таком доме не задерживается надолго. Хотя прогревается данное строение довольно быстро, всего за несколько часов. Такие дома больше подходят для временного проживания.

Качественный каркасный дом для постоянного проживания, за счет своей многослойности и других конструкционных особенностей, позволяет минимизировать потери тепла, не оставляя ощущения влажности помещения в холодное время года. Такое жилье не требует постоянного подогрева и может долго сохранять внутреннее тепло.

Особенно высокими параметрами энергоэффективности обладают здания, построенные по технологии 3D каркас, стены которого имеют три смещенные между собой слоя утепления общей толщиной 250 мм, которые перекрывают деревянные элементы каркаса, ликвидируя в стенах «мостики холода». Кроме того, внешним слоем утеплителя закрыты цокольное и межэтажное перекрытия, поэтому в доме даже в лютые морозы всегда теплые полы.

Оценка теплоизоляционных свойств
внешних ограждающих конструкций

Чтобы понять, какой загородный дом является самым теплым среди всех, сравним коэффициенты теплопроводности материалов разных стеновых конструкций.

Коэффициент теплопроводности – эта величина, которая показывает удельную теплопроводность материала внешних стен. Низкая теплопроводность стен дома способствует продолжительному сохранению тепла внутри помещения и обеспечивает отличные условия проживания. В противном случае стены пропускают холод и потребуется больше мощности в системе отопления.

Теплопроводность каменного дома

Рассмотрим коэффициенты теплопроводности материалов каменных домов:

  • Железобетон — 1,5 Вт/(м∙К)
  • Силикатный кирпич – 0,70 Вт/(м∙К)
  • Керамический сплошной — 0,56 Вт/(м∙К)
  • Керамический пустотелый – 0,47 Вт/(м∙К)

Чем выше коэффициент теплопередачи, тем хуже теплозащита стеновой конструкции. Как видим, сами по себе материалы, из которых строятся каменные дома, имеют довольно высокий коэффициент теплопередачи. Следуя требованиям СНиП для того чтобы построить каменный дом, толщина его внешних стен должна достигать просто ошеломляющих цифр. Например, дом из бетона должен иметь толщину стен в 2,5 метра, а из кирпича — в 1,5 метра. Это огромные материальные затраты. Сегодня, таким образом уже никто не строит.

Читайте так же:
Чем заложить между кирпичей

Чтобы удерживать тепло внутри дома у кирпича просто не хватает теплопроводности, поэтому кирпичные стены всегда дополнительно утепляют. Для теплоизоляции обычно применяются материалы типа пенополистирола. Сверху утеплителя внешние стены дома обкладывают декоративным кирпичом или другим облицовочным материалом.

Теплопроводность деревянного дома

Если сравнивать деревянный или кирпичный дом, какой из них лучше сохраняет тепло? Ответ будет явно в пользу древесины.

Дерево, по сравнению с кирпичом или бетоном, в разы теплее. Влияние на теплопроводность оказывает плотность материала. У пористого материала всегда более низкий коэффициент теплопередачи, соответственно стены такой постройки более теплые. Древесина имеет хорошие показатели теплопроводности — 0,18 Вт/(м∙К). Это минимум в три раза ниже, чем у кирпича, и примерно на 30% меньше, чем у газосиликатных и пенобетонных блоков. Разница очевидна.

Каркасные дома из бруса и бревна имеют определенные преимущества за счет лучших характеристик материала. Однако основным недостатком деревянной конструкции является высокая ветропроницаемость и низкая герметичность. Крайне сложно обеспечить высокую точность сопряжения деревянных элементов, особенно в углах дома. Джутовые или полимерные уплотнители лишь частично решают данную проблему. Следствием этого является наличие большого количества «мостиков холода» по всей площади стеновой конструкции. Наибольшие потери тепла в деревянном доме сосредоточены именно в местах сквозных промерзаний, ликвидировать которые возможно только с помощью дополнительного утепления стен.

Теплопроводность каркасного дома

По ряду своих характеристик обычные канадские каркасные дома с толщиной стен 150 мм выглядят более привлекательно, чем каменные или деревянные. Это связано с тем, что каркасный дом обладает наименьшим среди прочих технологий и стройматериалов коэффициентом теплопроводности — 0,038 Вт/(м∙К). Получается, что его теплопроводность в 5 раз меньше, чем у дома из цельной древесины. Если сравнивать теплопроводность каркасного дома с кирпичным, то разница составляет почти 15 раз.

Среди перечисленных наилучшие показатели демонстрируют дома по технологии 3D каркас. Внешняя стена, возведенная по этой технологии, имеет коэффициент теплопроводности 0,0022 Вт/(м∙К). Данный показатель в 40 раз меньше, чем у профилированного бруса и более чем в 200 раз ниже, чем у кирпича. Такие высокие показатели энергоэффективности достигаются за счет структуры тройного каркаса и трех перекрестных слоев базальтового утеплителя.

Внешние стены дома по технологии 3D каркас не имеют «мостиков холода» и обеспечивают надежное сохранение тепла даже при экстремально низких температурах. Отсутствие контакта между элементами внешней и внутренней несущей конструкции полностью исключает возможность промерзания стен.

Заключение

какой дом самый теплый

В последние годы в сегменте малоэтажного жилищного строительства происходят значительные изменения. Экономические условия вынуждают население отказываться от традиционных материалов в пользу более прогрессивных технологий.

Наружная стена состоит из отдельных элементов, совокупность и взаимодействие которых определяет способность жилого здания сохранять тепло. В этом отношении самые худшие характеристики у традиционной кирпичной кладки. Высокая теплопроводность даже у лучших образцов кирпича, практически исключает возможность его использования без дополнительного утепления. Воздушный зазор в двухрядной стене и использование пустотелого керамического кирпича лишь незначительно снижают теплопотери. Подобные строительные конструкции однозначно нуждаются в дополнительном утеплении.

Сравнивать какой дом лучше каркасный или кирпичный по теплотехническим характеристикам даже некорректно. Преимущество первого выглядит просто подавляющим. При прочих равных условиях системы отопления, для того, чтобы прогреть кирпичные стены, бывает необходимо несколько суток. Каркасный дом, возведенный, например, с использованием технологии 3D каркас, полностью протапливается в течение двух часов и в дальнейшем хорошо сохраняет тепло.

Этот же фактор позволяет точно ответить на вопрос: брус или каркас что лучше? Какое жилое строение является более эффективным с точки зрения способности сохранения тепла? Преимущества каркаса здесь также весомые. Деревянный брус или бревно имеют неплохие показатели тепловодности, но дом из бруса все же не лишен технологических недостатков в виду наличия большого количества «мостиков холода».

Простое сравнение показателей теплопроводности кирпича и 3D каркас явно в пользу последнего. Ответ на вопрос, из чего строить самый теплый дом, очевиден и однозначен. Решая данный вопрос, правильнее говорить все же о деревянном каркасном доме по технологии 3D каркас, в котором применение многослойной структуры позволяет устранить все недостатки других технологий загородного домостроения.

из чего строить самый теплый дом

Здания по технологии 3D каркас являются не только самыми теплыми каркасными домами для постоянного проживания, но также являются лидерами по энергоэффективности. В этом мнения многих специалистов совпадают: 3D каркас обладает исключительной способностью к сохранению тепла, имеет параметры «пассивного дома» и рекомендован для использования на всей территории нашей страны в качестве энергоэффективного жилья.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector