Intekoufa.ru

Ремонт и стройка
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цемент с целлюлозой своими руками

Железнение бетона – все о процессе

Бетон с полным правом можно назвать одним из наиболее важных строительных материалов. Стал он таким по причине своей невероятной прочности, позволяющей выдерживать колоссальные нагрузки. Но даже в случае с ним постоянное воздействие внешних факторов способно в значительной степени повлиять на бетонную поверхность. И одним из способов избежать этого является железнение. И о нем, как показывает практика, знают далеко не все. Что ж, сегодня мы постараемся восполнить данный пробел в познаниях.

Внешние факторы, оказывающие разрушительные воздействия на бетон

  • Механические нагрузки. Бетон можно назвать одним из самых прочных строительных компонентов, но и у него есть срок годности. А так как подобный материал используется для самых ответственных с точки зрения нагрузок направлений, то воздействие на него очень сильное и со временем разрушает структуру данного искусственного камня;
  • Природные воздействия. Перепады температуры, влага, осадки и тому подобное. Проникая в поры бетона, вода может разрушать его структуру во время превращения в лед. Бетон буквально разрывается изнутри. Кроме того влага разрушает и арматурные элементы внутри железобетонных конструкций и изделий;
  • Некоторые химические соединения также могут вызвать значительные неприятные последствия.

Что представляет собой железнение бетона

Если говорить простым языком, то это процесс втирки в свежую бетонную поверхность различных компонентов. Последние могут различаться весьма и весьма сильно. В самом примитивном варианте это может быть сухой цемент, в самых современных – сложные растворы, придающие бетонной поверхности самые различные свойства. Собственно, это все, что необходимо знать о процессе железнения, и ниже мы будем перечислять его способы, а также давать советы по тому, как правильно работать в этом направлении.

Сухие способы обработки бетонной поверхности

Данные процедуры проводятся прежде всего с целью обработки горизонтальных поверхностей, так как с вертикальных такая смесь просто упадет. Собственно, это и является самым главным недостатком, так как зачастую железнению необходимо подвергать именно стены. Используют в этом случае, как чистый цемент, так и смеси из различных материалов.

Сухой цемент

Самый простой способ, позволяющий повысить прочность пола за счет увеличения процентного количества цемента в поверхностном слое бетона. В качестве недостатка можно выделить малую адгезию – цемент не пропитывает бетон на должную глубину и в должной степени, вследствие чего со временем начинает просто отслаиваться. Сам процесс делится на несколько этапов:

  • На свежий бетонный слой посыпается цемент примерно до высоты в 3 миллиметра. Примерно на квадратный метр у нас выходит 5 килограммов бетона. При этом для достижения лучшего результата нужно просеивать его через сито;
  • Дождитесь, когда цементный слой полностью впитает в себя влагу с поверхности бетона. Узнать это можно до появления кашеобразной консистенции. После чего при помощи кельмы или лопатки начинается втирка цемента в бетонную поверхность;
  • Добиваемся того, чтобы верхний слой был абсолютно сухим и при этом имел темно-серый цвет.

Ходить по такому бетону можно уже через сутки, однако свою максимальную прочность он наберет спустя 4-7 суток.

Цемент с добавками

Лучшего результата можно добиться путем втирания в бетонную поверхность смеси цемента с кварцевым песком, жидким стеклом, алюминатом натрия, базальтом или полимерными волокнами. Последнее не только укрепляет поверхностный слой, но и, к примеру, снижает впитываемость влаги. Так что использовать его идеально для «мокрых помещений, таких как санузел или кухня. Что же касается алюмината натрия, то его ввод в смесь для железнения позволяет не только повысить влагостойкость, но и кардинальным образом снижает количество образующейся и скапливающейся на поверхности пыли. Прочность же увеличивается за счет прочных заполнителей на основе минералов или нержавеющей стали.

Мокрое железнение цементом и смесями

Способ привлекателен тем, что позволяет добиться большей прочности, а также может быть использован как на горизонтальных, так и на вертикальных поверхностях. Заключается в нанесении жидкой смеси цемента и песка в соотношении 1 к 1 на бетонную поверхность с последующим втиранием. При этом в раствор может быть добавлено известковое тесто в объеме примерно 10 процентов. Не исключается введение уже упомянутых выше жидкого стекла или алюмината натрия. Как только поверхность высохла, ее можно покрыть полимерным слоем.

Важно! Использовать жидкое железнение можно только после двух недель заливки бетона. В этом случае удастся обеспечить максимально качественное затвердение.

В жидких смесях, проникающих гораздо глубже, часто находятся вещества, вступающими в реакцию с карбонатом кальция и известью, содержащимися в бетоне. В связи с этим проявляются свойства, которых просто не удастся добиться с использованием обычно цементной стяжки.

Читайте так же:
Раствор цемент с опилками

Полимеры в железнении бетонных поверхностей

Специально созданные составы, позволяющие обеспечивать максимально высокий результат. На данный момент присутствуют на рынке в достатке и активно представлены в профильных магазинах. В сети немало инструкций и видео по работе со смесями, но добиться хорошего результата можно просто следуя инструкции на упаковке.

При этом преимуществом также является и возможность работы в любых погодных условиях, при любой температуре и влажности. Главное, чтобы эти условия позволяли проводить сами работы по заливке бетона и создания железобетонных конструкций.

Особенностью применения таких смесей являются необходимость обрабатывать уже затвердевший, но при этом все еще влажный на ощупь. Другими словами – необходимо поймать нужный момент.

Сам процесс же напоминает нанесение сухой смеси – на пол высыпается тот же сухой полиуретан, после чего происходит его разравнивание. После высыхания образуется прочное полимерное покрытие, обеспечивающее бетону наибольшую защиту и значительно продляя срок его службы.

Советы, которые окажутся полезными

  • Обрабатывать можно и старые бетонные поверхности. Главное – чтобы эта самая поверхность была должным образом подготовлена: очищена от пыли и грязи, а также отваливающихся фрагментов;
  • Сухие смеси могут содержать частицы разного размера. Если они крупные, то такой продукт может неравномерно впитать влагу, что значительно усложняет работу и снижает качество нанесения. В то же время мелкие частицы, подобные кварцу, снижают прочность сцепления с бетонной поверхностью;
  • Покупая готовые смеси, лучше изучить представленных на вашем рынке производителей и не экономить на имени и качестве. В противном случае никакого укрепления вы можете не получить, так как состав останется целиком на совести производителя.

Затирочные машины

В том случае, если вам необходимо обработать большую поверхность, то указанные выше инструменты, полутерки и терки, как и любые другие механические способы могут оказаться слишком трудозатратными. В этом случае лучше воспользоваться специальными затирочными машинами. На рынке представлено множество моделей, отличающихся своими техническими характеристиками и ценой. Для снижения затрат можно взять уже бывшую в употреблении технику, но нужно внимательно проверить ее состояние.

Единственный недостаток таких машин – ими удобно обрабатывать лишь плоские масштабные поверхности. Углы и различные рельефные участки бетона все равно придется подвергать железнению вручную.

Легкий саман или Легкий Соломобетон (Солома+Цементный раствор в соотношение 80%-20%)

Аватар пользователя rePROEKT

Сколько не пытался найти в различных поисковых системах ссылки на это слово, всё безрезультатно. Но термин этот существует и как бы есть даже маленькое объяснение это глина смешанная с соломой по народному саман.

Такой вопрос кто нибудь пробовал делать стены не из глиносоломы а из цементного раствора и соломы в соотношении 80 % соломы и 20 % цементного раствора?

Да я сразу соглашаюсь с тем что глина это природный антисептик, и она очень доступна и дёшева. Но как трудно работать с глиняным раствором, он очень трудно замешивается и долго сохнет в конструкциях стен.

Глина легко размывается осадками, дает большую усадку, трескается при высыхание. В общем в чистом виде её использовать очень тяжело, для придания ей необходимых свойств необходимы добавки (известь, соль, песок) . Да и ёщё один аспект глина используемая в строительстве глиносоломенных домов должна быть очень хорошего качества, самая хорошая глина это с карьера кирпичного завода (красного цвета). К сожалению глина с участка, с вырытого котлована имеет низкое качество и больше относится к суглинку а это грунт и не очень хороший материал для возведения глиносоломенных стен.

Читайте так же:
Fuji 8 цемент это

Изучив проблему строительства глиносоломенных домов из легкого самана пришел к выводу что глину можно заменить цементным раствором с добавлением извести и глины в соотношение 70%-10%-20%. Цементный раствор быстро сохнет, стена из цементносоломы будет намного крепче и устойчивее к природным осадкам, и цементный раствор будет только выполнять функцию связки соломы.

Известь будет защищать солому от грызунов, и остановит последуещее выделения из соломы древесного сахара, ведь солома- это тоже дерево только быстрее возобновляемое.

И проблемы в стене из соломы точно такие как в арболитовой стене. Арболит это цементный раствор смешанный с отходами деревообработки (опилки, щепа).

Глина будет присутствовать в растворе в роли антисептика, но я не исключай и такой вариант как промазать деревянный несущий каркас стены глиняным раствором. Ведь если перевести время потраченное на замесы только глины при строительстве глиносоломенного дома то её дешевизна оказывается обманчивой, и сохнут стены 3-4 месяца. А если использовать цементный раствор то это может оказаться даже дешевле, чем использование глины. Ведь стены из глины нужно дополнительно штукатурить известковым раствором по сетке, а при заливке в стене утрамбованной соломы цементным раствором (консистенция кефира) стену в последующим можно только покрасить краской.

Пока это всё теория но в ближайшее время я детально отработаю технологию строительства и предоставлю фотографии. Но я убежден в одном люди строят дома из глиносоломенной смеси только потому что эта технология так называется. Ведь технологии саманного строительства уже 1000 лет, и технологию легкого самана стали применять последние лет 50-80. Но прогресс не стоит на месте и появилось много материалов которые с большим успехом могут заменить глину в данной технологии. Считаю что нужно пробовать, и технология легкого соломобетона завоюет популярность.

Опилки превратили в водостойкий биоразлагаемый материал

Американские материаловеды предложили новый способ получения биоразлагаемого пластика из древесной стружки. Они обработали стружку глубоким эвтектическим растворителем для того, чтобы сначала растворить входящий в состав дерева лигнин, а затем снова осадить его на целлюлозные волокна и таким образом скрепить их. Полученный материал водонепроницаем и выдерживает нагрев до 350 градусов Цельсия, при этом разлагается за три месяца в почве и за шесть месяцев на воздухе. Результаты исследования опубликованы в журнале Nature Sustainability.

Ученые уже долгое время пытаются сделать биоразлагаемый аналог пластика на основе природных полимеров (целлюлозы, крахмала и некоторых других). Однако эта задача оказалась неожиданно трудной. Чтобы решить ее, нужно совместить в одном материале почти противоположные свойства — с одной стороны прочность и водонепроницаемость во время использования, с другой — способность быстро разрушаться после использования. Кроме того, чтобы выйти на рынок и конкурировать с существующими пластиковыми материалами, новый биоразлагаемый пластик должен быть дешевым и простым в получении.

Новый способ получения биоразлагаемого пластика на основе целлюлозы предложили американские материаловеды под руководством Юаня Яо (Yuan Yao) из Йельского Университета и Ляня Бина Ху (Liangbing Hu) из Университета Мериленда. За основу ученые взяли обычную древесную стружку, полученную из отходов деревообрабатывающей промышленности. Частицы стружки имеют пористую структуру и состоят из волокон целлюлозы и гемицеллюлозы, в матрице лигнина — смеси разных ароматических полимеров.

Чтобы превратить стружку в вязкую основу для пластика, сначала ее обрабатывали жидкой смесью щавелевой кислотой с хлоридом холина. При комнатной температуре и щавелевая кислота и хлорид холина — твердые вещества, однако если смешать их в мольном соотношении один к одному и нагреть до 80 градусов Цельсия, а затем медленно остудить, они образуют стабильную жидкую смесь — так называемый глубокий эвтектический растворитель. Это возможно за счет образования сильных водородных связей между двумя молекулами — щавелевая кислота выступает как донор водорода, а холин — как акцептор. Полученный эвтектический растворитель эффективно разрушает водородные связи и позволяет одновременно расщепить крупные волокна целлюлозы на более мелкие и растворить лигнин и некоторую часть гемицеллюлозы. Обработку стружки проводили в течение двух часов при температуре 110 градусов Цельсия, после чего к растворителю добавили воду. Полярность жидкой фазы повышалась и лигнин переходил из раствора в нерастворимое состояние. После этого растворитель удаляли фильтрованием, а твердый остаток несколько раз промывали водой и затем снова разбавляли небольшим количеством воды и обрабатывали ультразвуком. Получалась вязкая суспензия темного цвета, которая при нанесении на гидрофобную поверхность постепенно застывала и превращалась в однородный пластичный материал. Авторам работы удалось получить листы размером 15 на 100 сантиметров и толщиной в один миллиметр.

Читайте так же:
Сделай сам горшок цемент мешковина

На снимках сканирующей электронной микроскопии видно, что волокна целлюлозы в полученном материале имеют размер от 10 до 300 нанометров — значительно меньше, чем в исходных образцах древесной стружки (около 50 — 100 микрометров). Метод спектроскопии ядерного магнитного резонанса подтвердил наличие водородных связей между волокнами целлюлозы и лигнина, которые сформировались при повторном осаждении лигнина из протонного растворителя.

Состоящий из небольших волокон целлюлозы, прочно скрепленных лигнином материал очень стабилен: имеет предел механической прочности в 128 мегапаскалей и выдерживает нагрев до температуры 350 градусов Цельсия. Кроме того, материал показал хорошую водостойкость — пленка, которую поместили в воду на тридцать дней, сохранила форму, в то время, как контрольный образец из целлюлозы за это время полностью потерял форму и распался на отдельные фрагменты.

Новый материал может полностью разложиться в почве под действием грибов и микроорганизмов — чтобы подтвердить это, авторы работы вырезали из него пластинки размером 5 на 4,5 сантиметра и закапывали на глубину 5 сантиметров. Через два месяца пластинка теряла форму и заметно истончалась, а через три полностью исчезала. На контрольном образце из поливинилхлорида в тех же условиях через три месяца не было видно никаких изменений. Материал может разлагаться и на открытом воздухе под действием солнца, влаги и ветра, правда на это нужно чуть больше времени — около шести месяцев. Кроме того после использования новый биопластик можно регенерировать — для этого достаточно разбить пластиковый лист на мелкие части с помощью ультразвука, снова добавить к нему немного воды и перемешать. В результате получается такая же вязкая суспензия, как и в первом эксперименте, и из нее можно снова получить биопластиковые листы.

Авторы особо отмечают, что смесь щавелевой кислоты и хлорида холина, которую использовали для разрушения водородных связей между частицами целлюлозы, также можно регенерировать и использовать повторно. В дальнейшем они собираются адаптировать свою методику, чтобы получать биопластик не только из древесной стружки, но и из травы, соломы злаков и других растительных отходов.

Ранее ученые изготовили из бамбукового волокна водонепроницаемый стаканчик, который наполовину разлагается в почве за два месяца. Другая группа ученых получила композитный материал из двух природных материалов: целлюлозы и слюды, и даже изготовила из него корпус для смартфона.

Цемент с целлюлозой своими руками

Методы физико-химической обработки бумаги не всегда позволяют менять свойства готового материала в необходимых пределах. К тому же физико-химические методы обработки бумаги-основы не обеспечивают придания композиционному целлюлозному материалу принципиально новых свойств [5, 8, 10, 11]. Методы химической модификации непосредственно целлюлозы позволяют получать на основе модифицированных волокон новые виды бумаг с заранее заданными эксплуатационными свойствами [1, 2, 3, 6, 7].

Одним из направлений развития современной химии полимеров (как синтетических, так и природных) является модификация полимеров для получения материалов с новыми, заранее заданными свойствами [4, 9]. Эта задача может решаться различными путями в зависимости от химической природы полимера, условий его переработки, свойств и областей применения получаемых изделий.

Читайте так же:
Сфера деятельности производство цемента

Целлюлозные волокна по сравению с синтетическими волокнами обладают как рядом преимуществ (большая гигроскопичность, более высокая термостойкость, лучшие гигиенические свойства, более низкая стоимость), так и рядом существенных недостатков (горючесть, сминаемость, малая устойчивость к действию микроорганизмов, невысокая эластичность) [1, 2].

Основными методами модификации, которые могут быть использованы для устранения указанных недостатков и придания целлюлозе новых ценных свойств, являются структурная и химическая модификации.

Методы структурной модификации целлюлозы основаны на направленном изменении взаимного расположения и степени ориентации макромолекул и особенно элементов надмолекулярной структуры в целлюлозном волокне. Такие изменения наблюдаются при обработке целлюлозных волокон растворами щелочей (процесс мерсеризации). Этими методами можно значительно улучшить механические свойства волокон и пленок, но нельзя придать им новые свойства.

Методы химической модификации основаны на направленном изменении химического состава и строения любого из трех компонентов целлюлозного волокна – целлюлозы, гемицеллюлоз и лигнина – за счет осуществления химических реакций [1, 10].

Для химической модификации целлюлозы используются все реакции классической химии целлюлозы, но практическое значение имеют следующие процессы:

Процессы этерификации или алкилирования сводятся к частичной замене в макромолекуле целлюлозы гидроксильных групп на ацетильные, метильные, карбоксиметильные, цианэтильные, оксиэтильные и другие. Эти реакции сыграли большую роль в получении разнообразных производных целлюлозы, а также для улучшения бумагообразующих свойств волокон.

Синтез привитых сополимеров является одним из наиболее перспективных методов химической модификации целлюлозы. Для синтеза привитых сополимеров целлюлозы могут быть использованы все методы, применяемые для синтеза других полимеров, но практически перспективным является метод радикальной полимеризации.

При модифицировании целлюлозных волокон следует учитывать следующие особенности:

– химические превращения функциональных групп в макромолекуле целлюлозы протекают, как правило, в гетерогенной среде в условиях заторможенной диффузии реагента в волокно, особенно в кристаллические области надмолекулярной структуры целлюлозы.

– ацетильные связи между макромолекулами целлюлозы малоустойчивы к действию минеральных кислот, поэтому химические превращения целлюлозы необходимо осуществлять в таких условиях, в которых разрыв ацетильных связей, приводящий к снижению молекулярной массы и ухудшению механических свойств целлюлозных материалов, происходит в минимальной степени.

Целлюлоза, как многоатомный спирт, может давать сложные эфиры неорганических и органических кислот, простые эфиры, алкоголяты, продукты окисления (кислоты), галогениды, аминопроизводные, комплексные соединения и т.д. Наиболее важными производными целлюлозы являются ее сложные и простые эфиры. Образование эфиров целлюлозы теоретически возможно для всех неорганических и органических кислот, но практическое значение имеют немногие из них.

Большинство реакций целлюлозы начинается в гетерогенной среде. В ходе некоторых реакций целлюлоза переходит в раствор, и они заканчиваются в гомогенной среде.

Спиртовые гидроксильные группы целлюлозы – это полярные группы, которые могут замещаться нуклеофильными группами или соединениями в сильнокислом растворе. В каждом глюкозном звене содержатся три ОН-группы, что делает возможным образование моно-, ди- и триэфиров целлюлозы. Водородные связи между ОН-группами целлюлозы при этерификации частично или полностью разрываются. Введение сложноэфирных групп увеличивает расстояние между цепями целлюлозы, и ее надмолекулярная структура изменяется или даже разрушается.

Эфиры целлюлозы различаются по степени полимеризации (СП), степени замещения (СЗ) и растворимости в воде или органических растворителях. Исходным сырьем для получения эфиров целлюлозы являются хлопковая и древесная целлюлоза, предназначенная для химической переработки.

Нитрат целлюлозы образуется в результате взаимодействия между ОН-группами целлюлозы и азотной кислотой. Нитраты целлюлозы со СЗ 1,8-2,0, растворимые в этаноле, используют для получения целлулоидной пленки и лаков. Нитраты со СЗ 2-2,3, растворимые в метаноле, ацетоне, сложных эфирах – для производства лаков и клеев. Нитраты со СЗ 2,2-2,8, растворимые в ацетоне, – для производства взрывчатых веществ.

Для получения нитратов со СЗ до 1,5 (этерификация примерно 50 % ОН-групп) применяют 77,5 %-ную азотную кислоту. Нитраты со СЗ 2 получают при использовании безводной азотной кислоты. Для достижения более высокой степени замещения применяют нитрующие смеси из азотной и серной кислот. В зависимости от состава нитрующей смеси, температуры и продолжительности нитрования получают нитраты целлюлозы с различными показателями качества.

Читайте так же:
Ремонт канализационных труб цементом

После нитрования нитраты целлюлозы стабилизируют с целью удаления остаточных кислот, образовавшихся в результате побочных реакций, обрабатывая водными растворами нитрата магния, азотной кислоты, органических кислот, аминами.

Сульфат целлюлозы получают обработкой целлюлозы этерифицирующими смесями: серная кислота с триоксидом серы, серная кислота в жидком диоксиде серы, смесь серной и карбоновых кислот, триоксид серы в диметилформальдегиде (ДМФ). Сульфаты целлюлозы используют в качестве загустителей для типографских красок. Также они обладают ионообменными свойствами.

Фосфат целлюлозы получают обработкой целлюлозы фосфорной кислотой и оксидом фосфора (V) в спиртовом растворе или фосфорной кислотой в карбамиде. Фосфаты целлюлозы обладают огнезащитными и ионообменными свойствами.

Ацетат целлюлозы – наиболее важный из всех сложных эфиров органических кислот. По сравнению с нитратом целлюлозы, ацетаты имеет меньшую воспламеняемость и большую светостойкость.

В промышленности ацетилирование проводят ацетилирующей смесью, состоящей из уксусного ангидрида, ледяной уксусной кислоты и катализатора – серной или хлорной кислот. Перед ацетилированием для его ускорения и получения однородного продукта, целлюлозу подвергают предварительному набуханию в воде, уксусной кислоте, растворе аммиака или разбавленной серной кислоте.

В процессе ацетилирования целлюлоза набухает и постепенно растворяется. Далее проводят регенерацию целлюлозы из раствора. В процессе регенерации можно получать ацетатные волокна или пленки (процесс формования волокна). Для формования волокон триацетат целлюлозы растворяют в смеси дихлорметана с метанолом (9:1). Растворы продавливают через фильеры. Отверждение нитей осуществляют испарением растворителя потоком нагретого воздуха [2, 8].

Ацетилированию можно подвергать и бумажные полотна. Частично ацетилированная бумага обладает повышенной прочностью во влажном состоянии за счет образования поперечных связей между карбонильными и гидроксильными группами.

Простые эфиры целлюлозы используют в качестве эмульгаторов, диспергаторов, стабилизаторов в косметической, фармацевтической, пищевой, химической промышленности, в производстве пластмасс, текстильных изделий, цемента и бетона, в качестве загустителей типографских красок и лаков, для изготовления клеев и клеевых красок, в качестве защитных покрытий и пленок.

Предварительно целлюлозу превращают в щелочную целлюлозу или подвергают предварительному набуханию. Введение простых эфирных групп в молекулы целлюлозы придает ей способность к набуханию или даже растворению в холодной воде. Эти свойства зависят от степени и однородности замещения. Замена ОН-групп группами простого эфира вызывает увеличение молекулярной массы в зависимости от СЗ (степени замещения) и размера эфирной группы. В случае гидрофильных заместителей растворимость в воде достигается при относительно низкой степени замещения и сохраняется вплоть до полностью замещенных продуктов. Карбоксиметилцеллюлоза из всех эфиров целлюлозы производится в наибольших количествах. Наиболее распространена натриевая соль Na-КМЦ. Слабое карбоксиметилирование целлюлозы и вискозных волокон улучшает прочностные свойства.

Метилцеллюлозу в промышленности получают обработкой щелочной целлюлозы газообразным или жидким метилхлоридом. Получают метилцеллюлозу со степенью замещения вплоть до 3,0.

Гидроксиэтилцеллюлозу получают действием окиси этилена на щелочную целлюлозу. В промышленности получают три типа гидроксиэтилцеллюлозы: растворимую в водном растворе гидроксида натрия с СЗ 0,3-0,4; растворимую в воде с СЗ 0,5-2,5; высокозамещенную с СЗ > 2,5. Гидроксиэтилцеллюлоза обладает термопластичными и пленкообразующими свойствами. Слабое гидроксиэтилирование целлюлозы улучшает ее прочностные свойства (разрывную длину, сопротивление излому, прочность на растяжение) и термостабильность, но снижает светонепроницаемость.

В последние годы все большее значение приобретают смешанные простые эфиры целлюлозы. Их получают из щелочной целлюлозы одновременной обработкой метилхлоридом и окисью этилена. В зависимости от соотношения реагентов можно получить целлюлозные композиционные материалы с заданными эксплуатационными свойствами.

Таким образом, для новых целлюлозных композиционных материалов, обладающих высокими прочностными характеристиками, а так же с заданным балансом сорбционных свойств поверхности готового материала, целесообразно применять методы химической модификации непосредственно целлюлозы. Это позволит значительно расширить спектр материалов на основе целлюлозного сырья.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector